首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
珠江河口枯季咸潮上溯特征与机制分析
作者:张敏1 2  陈钰祥3  罗军1 2  曾学智1 2 
单位:1. 国家海洋局南海预报中心, 广东 广州 510310;
2. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510310;
3. 中国水产科学研究院南海水产研究所, 广东 广州 510310
关键词:珠江河口 咸潮上溯 数值模拟 机制 
分类号:P731.23
出版年·卷·期(页码):2021·38·第五期(8-16)
摘要:
以珠江河口磨刀门和伶仃洋为代表,通过实测资料分析和数值模拟相结合的方法,对珠江河口枯季咸潮上溯特征和机制进行系统的研究分析。结果表明:在整个珠江河口,咸潮上溯主要通过底层入侵河道,而淡水主要通过表层流出外海。中潮期间的涨潮历时明显大于落潮历时是磨刀门水道在中潮期间出现咸潮上溯最大值的原因。伶仃洋整体盐度呈现东高西低的分布特征,盐度分层现象也较为明显,这主要与伶仃洋水下地形东深西浅以及注入淡水的口门分布在西侧有关。另外,表层低盐度水在科氏力和北风的作用下西偏,导致高盐度区域主要位于伶仃洋东部的深水区域,低盐度水团主要位于伶仃洋西侧浅滩区域。
Taking the Modaomen and Lingdingyang as examples, this paper systematically studies and analyzes the characteristics and mechanisms of saltwater intrusion in the Pearl River Estuary in the dry season based on both measured data analysis and numerical simulation. The result shows that the saltwater invades the Pearl River Estuary mainly through the bottom, while the fresh water flows out to open seas through the surface. The maximum value of saltwater intrusion in Modaomen waterway occurs during the mid-tide after neap tide since the duration of flood tide is significantly greater than that of ebb tide during the middle tide. The salinity is higher in the East and lower in the west with strong stratification in the Lingdingyang. That is mainly related to the underwater topography of Lingdingyang area, which is deep in the east and shallow in the west and the entrances for fresh water injecting into Lingdingyang are distributed on the west. In addition, the surface water with low salinity tends to move westward under the Coriolis force. Therefore, the high-salinity area is located in the deep water area of eastern Lingdingyang and the low-salinity area is mainly located in the shoal area of western Lingdingyang.
参考文献:
[1] Chen X, Zong Y. Major impacts of sea-level rise on agriculture in the Yangtze delta area around Shanghai[J]. Applied Geography, 1999, 19(1):69-84.
[2] Uncles R J, Stephens J A, Murphy R J. Aircraft and sea-truth observations of a small-scale estuarine intrusion front[J]. Journal of Marine Systems, 1997, 12(1/4):199-219.
[3] 韩乃斌. 长江口南支河段氯度变化分析[J]. 水利水运科学研究, 1983(1):74-81.
[4] 徐建益, 袁建忠. 长江口南支河段盐水入侵规律的研究[J]. 水文, 1994, 83(5):1-6, 63.
[5] 沈焕庭, 茅志昌, 朱建荣. 长江河口盐水入侵[M]. 北京:海洋出版社, 2003.
[6] 朱建荣, 吴辉, 李路, 等. 极端干旱水文年(2006)中长江河口的盐水入侵[J]. 华东师范大学学报(自然科学版), 2010(4):1-6, 25.
[7] Wu H, Zhu J R, Chen B R, et al. Quantitative relationship of runoff and tide to saltwater spilling over from the North Branch in the Changjiang Estuary:A numerical study[J]. Estuarine, Coastal and Shelf Science, 2006, 69(1-2):125-132.
[8] Li L, Zhu J R, Wu H, et al. A numerical study on water diversion ratio of the Changjiang (Yangtze) estuary in dry season[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(3):700-712.
[9] Chen B R, Zhu J R, Fu L H. Formation mechanism of freshwater zone around the Meimao Sandbank in the Changjiang estuary[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(6):1329-1339.
[10] 朱建荣, 傅利辉, 吴辉. 风应力和科氏力对长江河口没冒沙淡水带的影响[J]. 华东师范大学学报(自然科学版), 2008, 39(6):1-8, 39.
[11] 项印玉, 朱建荣, 吴辉. 冬季陆架环流对长江河口盐水入侵的影响[J]. 自然科学进展, 2009, 19(2):192-202.
[12] Wu H, Zhu J R, Choi B H. Links between saltwater intrusion and subtidal circulation in the Changjiang Estuary:A model-guided study[J]. Continental Shelf Research, 2010, 30(17):1891-1905.
[13] 宋晓飞, 石荣贵, 孙羚晏, 等. 珠江口磨刀门盐水入侵的现状与成因分析[J]. 海洋通报, 2014, 33(1):7-15.
[14] 孔兰, 陈晓宏. 珠江口咸潮影响因素分析[J]. 水资源保护, 2015, 31(6):94-97, 134.
[15] 高时友, 陈子燊. 珠江口磨刀门水道枯季咸潮上溯与盐度输运机理分析[J]. 海洋通报, 2016, 35(6):625-631.
[16] 刘祖发, 丁波, 关帅, 等. 磨刀门水道咸潮上溯数值模拟及其分析[J]. 中山大学学报(自然科学版), 2016, 55(6):1-9.
[17] 刘祖发, 张泳华, 陈晓越, 等. 数值分析径流变化对磨刀门咸潮上溯的影响[J]. 亚热带资源与环境学报, 2017, 12(4):30-38.
[18] 陈文龙, 邹华志, 董延军. 磨刀门水道咸潮上溯动力特性分析[J]. 水科学进展, 2014, 25(5):713-723.
[19] 林若兰, 卓文珊, 曾珂, 等. 不同风向对珠江东四口门盐水入侵的影响[J]. 水资源保护, 2020, 36(1):66-75.
[20] Chen C S, Liu H D, Beardsley R C. An unstructured grid, finitevolume, three-dimensional, primitive equations ocean model:application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1):159-186.
[21] 陈钰祥, 黎小国, 佟飞, 等. 广东惠州东山海人工鱼礁对附近海域潮汐动力影响研究[J]. 南方水产科学, 2018, 14(6):17-26.
[22] 李培良, 左军成, 李磊, 等. 南海TOPEX/POSEIDON高度计资料的正交响应法潮汐分析[J]. 海洋与湖沼, 2002, 33(3):287-295.
[23] 海洋图集编委会. 南海海洋图集(水文)[M]. 北京:海洋出版社, 2006:13-168.
[24] 丁晓英, 余顺超. 基于遥感的珠江口表层盐度监测研究[J]. 遥感信息, 2014, 29(5):96-100.
[25] Chen Y X, Zuo J C, Zou H Z, et al. Responses of estuarine salinity and transport processes to sea level rise in the Zhujiang (Pearl River) Estuary[J]. Acta Oceanologica Sinica, 2016, 35(5):38-48.
[26] 李春初. 珠江河口咸潮问题之我见[J]. 热带地理, 2013, 33(4):496-499.
[27] Wang B, Zhu J R, Wu H, et al. Dynamics of saltwater intrusion in the modaomen waterway of the pearl river estuary[J]. Science China Earth Sciences, 2012, 55(11):1901-1918.
[28] 邹华志. 河网、河口及海岸整体联解数值模式及其在珠江口咸潮上溯研究的应用[D]. 青岛:中国海洋大学, 2010:1-200.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn