首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
2019年6月16日新西兰克马德克群岛MW7.3地震震源机制快速反演与海啸波高数值模拟
作者:史健宇1 2  徐志国1 2  王君成1 2  李宏伟1 2 
单位:1. 国家海洋环境预报中心, 北京 100081;
2. 自然资源部海啸预警中心, 北京 100081
关键词:克马德克群岛 W震相 海啸数值模拟 COMCOT模型 
分类号:P731.25
出版年·卷·期(页码):2021·38·第五期(1-7)
摘要:
利用全球虚拟地震台网的波形数据,采用W震相快速震源机制反演方法,得到2019年6月16日新西兰克马德克群岛附近海域MW7.3地震信息。节面Ⅰ:走向角186°/倾角37°/滑动角71°,节面Ⅱ:走向角29°/倾角55°/滑动角104°,矩震级MW7.26。震源机制结果表明,此次地震是一次逆冲性质为主的浅源板间地震事件。由反演得到的震源机制断层面几何参数,采用COMCOT模型进行了海啸数值模拟计算,模拟结果表明,本次地震发生后,在震源附近产生了轻微海啸波动,最大波幅约为0.28 m,在拉乌尔岛船湾潮位站附近的波幅约为0.05 m,与实际观测值0.09m接近。
An earthquake with a magnitude of MW7.3 occurred near the Kermadec Islands, New Zealand in June 16, 2019. Based on the waveform from the Global seismograph Network, the focal mechanism of the earthquake is calculated rapidly using the W-phase method. For the nodal planeⅠ, strike is 186°, dip is 37°, rake is 71°, For the nodal plane Ⅱ, strike is 29°, dip is 55°, rake is 104° with the moment magnitude MW of 7.26. The focal mechanism solution shows that the earthquake with thrust-faulting occurred at the shallow boundary between the Pacific Plate and Indian-Australian Plate. Tsunami numerical simulation is implemented with COMCOT model using the actual fault plane solution from W-phase inversion. The simulation results show that the maximum waveform height is about 0.28 m. The maximum numerical simulation height near the Raoul Island is about 0.05 m, which is close to 0.09 m recorded by the gauge station.
参考文献:
[1] United States Geological Survey. M 7.3-Kermadec Islands, New Zealand[EB/OL].[2019-06-16]. https://earthquake.usgs.gov/earth-quakes/eventpage/us6000417i/executive.
[2] 何建坤, 刘福田. 俯冲板片形貌特征和活动大陆连缘演化体制的关系[J]. 地球物理学进展, 1998, 13(2):15-25.
[3] 吕政, 邵喜彬. 全球俯冲带形态特征研究[J]. 东北地震研究, 2004, 20(3):17-25.
[4] 罗青. 西南太平洋Tonga-Kermadec俯冲带岛弧岩浆作用的地球化学研究[D]. 北京:中国科学院大学, 2017.
[5] Benz H M, Herman M, Tarr A C, et al. Seismicity of the Earth 1900-2010 eastern margin of the Australia plate[R]. U. S. Geological Survey Open-File Report 2010-1083-I, scale 1:8, 000, 000, 2011.
[6] Bonnardot M A, Régnier M, Ruellan E, et al. Seismicity and state of stress within the overriding plate of the Tonga-Kermadec subduction zone[J]. Tectonics, 2007, 26(5):TC5017.
[7] Frohlich C. The nature of deep-focus earthquakes[J]. Annual Review of Earth and Planetary Sciences, 1989, 17:227-254.
[8] 黄骥超, 万永革, 盛书中, 等. 汤加-克马德克俯冲带现今非均匀应力场特征及其动力学意义[J]. 地球物理学报, 2016, 59(2):578-592.
[9] NOAA. National geophysical data center/world data service:NCEI/WDS global historical tsunami database. NOAA National Centers for Environmental Information[EB/OL]. (2021-07-07). https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/Hazards/iso/xml/G02151.xml&view=getDataView.
[10] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154.
[11] Kanamori H. W phase[J]. Geophysical Research Letters, 1993, 20(16):1691-1694.
[12] Kanamori H, Rivera L. Source inversion of W phase:speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175(1):222-238.
[13] 赵旭, 姚振兴. 2016年印尼苏门答腊岛海域Mw7.8地震震源运动学特征[J]. 地球物理学报, 2018, 61(3):880-888.
[14] 梁姗姗, 雷建设, 徐志国, 等. 2017年四川九寨沟MS7.0强震的余震重定位及主震震源机制反演[J]. 地球物理学报, 2018, 61(5):2163-2175.
[15] Hayes G P, Rivera L, Kanamori H. Source inversion of the W-Phase:real-time implementation and extension to low magnitudes[J]. Seismological Research Letters, 2009, 80(5):817-822.
[16] Duputel Z, Rivera L, Kanamori H, et al. W phase source inversion for moderate to large earthquakes (1990-2010)[J]. Geophysical Journal International, 2012, 189(2):1125-1147.
[17] 徐志国, 梁姗姗, 邹立晔, 等. SeisComP3地震监测软件系统及其在海啸预警系统建设中的应用[J]. 科技导报, 2017, 35(7):88-92.
[18] Liu P L F, Cho Y S, Yoon S B, et al. Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii[M]//Tsuchiya Y, Shuto N. Tsunami:Progress in Prediction, Disaster Prevention and Warning. Dordrecht:Springer, 1995.
[19] Wang X M, Liu P L F. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami[J]. Journal of Hydraulic Research, 2006, 44(2):147-154.
[20] 潘文亮, 王盛安. COMCOT数值模式的介绍和应用[J]. 海洋预报, 2009, 26(3):45-52.
[21] Shuto N. Numerical simulation of tsunamis-its present and near future[J]. Natural Hazards, 1991, 4(2-3):171-191.
[22] Myers E P, Baptista A M. Inversion for tides in the eastern North Pacific Ocean[J]. Advances in Water Resources, 2001, 24(5):505-519.
[23] Dao M H, Tkalich P. Tsunami propagation modelling-a sensitivity study[J]. Natural Hazards and Earth System Sciences, 2007, 7(6):741-754.
[24] Grilli S T, Ioualalen M, Asavanant J, et al. Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(6):414-428.
[25] 洪明理, 任鲁川, 霍振香. 基于E-FAST法分析海啸波高对潜在海啸源参数的敏感性[J]. 地震学报, 2014, 36(2):252-260.
[26] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410):58-61.
[27] Tatehata H. The New Tsunami warning system of the japan meteorological agency[M]//Hebenstreit G. Perspectives on Tsunami Hazard Reduction:Observations, Theory and Planning. Dordrecht:Springer, 1997:175-188.
[28] Kanamori H. Rupture process of subduction-zone earthquakes[J]. Annual Review of Earth and Planetary Sciences, 1986, 14:293-322.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn