摘要:
|
厄尔尼诺-南方涛动组合模态(C-mode)是厄尔尼诺衰减期西北太平洋上空异常反气旋发展的主要驱动力,通常可以形成水汽输送通道,导致我国南部地区降水增多并发生严重的洪涝灾害,而在拉尼娜期间则情况相反。利用1981—2020年美国国家环境预报中心和美国国家大气研究中心再分析数据集的表面风场资料分析了C-mode可预测性的季节-年代际变化。结果表明:C-mode在2000年以后的可预测性明显下降,主要原因是其变率减小、强度减弱、信噪比降低等。在季节尺度上,C-mode存在“秋季预报障碍”,这与信号的季节循环密切关联,当C-mode在秋季进入衰退期时,信号强度最弱、变率最小,因此其秋季的可预测性降低。 |
Existing researches have suggested that the El Niño-Southern Oscillation(ENSO) combination mode(C-mode) is the main driver of anomalous anticyclone development over the northwest Pacific Ocean during El Niño decay, which usually creates water vapor transport channels leading to increased precipitation in the southern China, and vice versa during La Niña. This paper uses surface wind field data during 1981-2020 from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset,to analyze seasonal-decadal variation in the C-mode predictability. The results show that the predictability of Cmode decreases significantly after 2000, and the main reasons for the decline of its predictability after 2000include the decreasing variability, weakening intensity, and decreasing signal-to-noise ratio. On the seasonal scale, C-mode has an autumn predictability barrier, which is mainly related to the seasonal cycle of the signal,because when C-mode enters the recession period in autumn, its signal is the weakest and its variability is the smallest. |
参考文献:
|
[1] RASMUSSON E M, WALLACE J M. Meteorological aspects of the El Niño/Southern Oscillation[J]. Science, 1983, 222(4629):1195-1202. [2] BJERKNES J. Atmospheric teleconnections from the equatorial pacific[J]. Monthly Weather Review, 1969, 97(3):163-172. [3] VAN LOON H, MADDEN R A. The Southern Oscillation. Part I:global associations with pressure and temperature in northern winter[J]. Monthly Weather Review, 1981, 109(6):1150-1162. [4] HOREL J D, WALLACE J M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation[J]. Monthly Weather Review, 1981, 109(4):813-829. [5] WALLACE J M, GUTZLER D S. Teleconnections in the geopotential height field during the Northern Hemisphere winter[J].Monthly Weather Review, 1981, 109(4):784-812. [6] WALLACE J M, RASMUSSON E M, MITCHELL T P, et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific:lessons from TOGA[J]. Journal of Geophysical Research:Oceans, 1998, 103(C7):14241-14259. [7] TRENBERTH K E, CARON J M. The Southern Oscillation revisited:Sea level pressures, surface temperatures, and precipitation[J]. Journal of Climate, 2000, 13(24):4358-4365. [8] ALEXANDER M A, BLADÉI, NEWMAN M, et al. The atmospheric bridge:the influence of ENSO teleconnections on airsea interaction over the global oceans[J]. Journal of Climate, 2002,15(16):2205-2231. [9] ZHANG R H, SUMI A, KIMOTO M. Impact of El Niño on the East Asian monsoon:a diagnostic study of the'86/87 and'91/92events[J]. Journal of the Meteorological Society of Japan, 1996, 74(1):49-62. [10] TOMITA T, YASUNARI T. Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system[J].Journal of the Meteorological Society of Japan, 1996, 74(4):399-413. [11] JI L R, SUN S Q, ARPE K, et al. Model study on the interannual variability of Asian winter monsoon and its influence[J].Advances in Atmospheric Sciences, 1997, 14(1):1-22. [12] 陶诗言,张庆云.亚洲冬夏季风对ENSO事件的响应[J].大气科学, 1998, 22(4):399-407.TAO S Y, ZHANG Q Y. Response of the Asian winter and summer monsoon to ENSO events[J]. Scientia Atmospherica Sinica, 1998, 22(4):399-407. [13] KANG I, JEONG Y. Association of interannual variations of temperature and precipitation in Seoul with principal modes of Pacific SST[J]. Journal of the Korean Meteorological Society,1996, 32:339-345. [14] ZHANG W J, JIN F F, STUECKER M F, et al. Unraveling El Niño's impact on the East Asian monsoon and Yangtze River summer flooding[J]. Geophysical Research Letters, 2016, 43(21):11375-11382. [15] HARRISON D E, LARKIN N K. The COADS sea level pressure signal:a near-global El Niño composite and time series view,1946-1993[J]. Journal of Climate, 1996, 9(12):3025-3055. [16] STUECKER M F, TIMMERMANN A, JIN F F, et al. A combination mode of the annual cycle and the El Niño/Southern Oscillation[J]. Nature Geoscience, 2013, 6(7):540-544. [17] STUECKER M F, JIN F F, TIMMERMANN A, et al.Combination mode dynamics of the anomalous Northwest Pacific anticyclone[J]. Journal of Climate, 2015, 28(3):1093-1111. [18] WANG B, WU R G, FU X H. Pacific-East Asian teleconnection:how does ENSO affect East Asian climate?[J]. Journal of Climate,2000, 13(9):1517-1536. [19] YANG J L, LIU Q Y, XIE S P, et al. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophysical Research Letters, 2007, 34(2):L02708. [20] XIE S P, HU K M, HAFNER J, et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J]. Journal of Climate, 2009, 22(3):730-747. [21] WU B, ZHOU T J, LI T. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I:maintenance mechanisms[J].Journal of Climate, 2017, 30(23):9621-9635. [22] WU B, ZHOU T J, LI T. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II:formation processes[J].Journal of Climate, 2017, 30(23):9637-9650. [23] WANG B, WU R G, LI T. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation[J]. Journal of Climate, 2003, 16(8):1195-1211. [24] LIN Z D, LU R Y. The ENSO's effect on eastern China rainfall in the following early summer[J]. Advances in Atmospheric Sciences, 2009, 26(2):333-342. [25] ZHANG W J, LI H Y, STUECKER M F, et al. A new understanding of El Niño's impact over East Asia:dominance of the ENSO combination mode[J]. Journal of Climate, 2016, 29(12):4347-4359. [26] 李海燕,张文君,何金海. ENSO及其组合模态对中国东部各季节降水的影响[J].气象学报, 2016, 74(3):322-334.LI H Y, ZHANG W J, HE J H. Influences of ENSO and its combination mode on seasonal precipitation over eastern China[J]. Acta Meteorologica Sinica, 2016, 74(3):322-334. [27] ZHENG F, WANG H, LUO H, et al. Decadal change in ENSO related seasonal precipitation over southern China under influences of ENSO and its combination mode[J]. Climate Dynamics, 2020, 54(3-4):1973-1986. [28] 李海燕,张文君,何金海,等. SST年循环对El Niño事件局地海气过程的影响[J].海洋学报, 2016, 38(1):56-68.LI H Y, ZHANG W J, HE J H, et al. Influence of SST annual cycle on local air-sea processes during El Niño events[J]. Acta Oceano logica Sinica, 2016, 38(1):56-68. [29] WEISHEIMER A, DOBLAS-REYES F J, PALMER T N, et al.ENSEMBLES:a new multi-model ensemble for seasonal-toannual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs[J]. Geophysical Research Letters, 2009, 36(21):L21711. [30] REN H L, ZUO J Q, JIN F F, et al. ENSO and annual cycle interaction:the combination mode representation in CMIP5 models[J]. Climate Dynamics, 2016, 46(11-12):3753-3765. [31] YI S J, ZHENG F, LUO H. ENSO combination mode and its influence on seasonal precipitation over southern China simulated by ECHAM5/MPI-OM[J]. Atmospheric and Oceanic Science Letters, 2019, 12(3):184-191. [32] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEPDOE AMIP-II reanalysis (R-2)[J]. American Meteorological Society, 2002, 83(11):1631-1644. [33] KAO H Y, YU J Y. Contrasting eastern-Pacific and central-Pacific types of ENSO[J]. Journal of Climate, 2009, 22(3):615-632. [34] KUG J S, JIN F F, AN S I. Two types of El Niño events:cold tongue El Niño and warm Pool El Niño[J]. Journal of Climate,2009, 22(6):1499-1515. [35] JIANG F, ZHANG W J, STUECKER M F, et al. Decadal change of combination mode spatiotemporal characteristics due to an ENSO regime shift[J]. Journal of Climate, 2020, 33(12):5239-5251. [36] HUANG J, VAN DEN DOOL H M, BARNSTON A G. Long-lead seasonal temperature prediction using optimal climate normals[J].Journal of Climate, 1996, 9(4):809-817. [37] BARNSTON A G, TIPPETT M K, L'HEUREUX M L. Skill of real-time seasonal ENSO model predictions during 2002-2011:is our capability increasing?[J] Bulletin of the American Meteorological Society, 2012, 93(5):631-651. [38] XUE Y, CHEN M Y, KUMAR A, et al. Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP climate forecast system version 2[J]. Journal of Climate, 2013, 26(15):5358-5378. [39] ZHENG F, FANG X H, YU J Y, et al. Asymmetry of the Bjerknes positive feedback between the two types of El Niño[J].Geophysical Research Letters, 2014, 41(21):7651-7657. [40] TRENBERTH K E. Potential predictability of geopotential heights over the Southern Hemisphere[J]. Monthly Weather Review, 1985, 113(1):54-64. [41] TRENBERTH K E. Some effects of finite sample size and persistence on meteorological statistics. Part II:potential predictability[J]. Monthly Weather Review, 1984, 112(12):2369-2379. [42] WEBSTER P J, YANG S. Monsoon and ENSO:selectively interactive systems[J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(507):877-926. [43] WEBSTER P J. The annual cycle and the predictability of the tropical coupled ocean-atmosphere system[J]. Meteorology and Atmospheric Physics, 1995, 56(1-2):33-55. [44] XUE Y, CANE M A, ZEBIAK S E, et al. On the prediction of ENSO:a study with a low-order Markov model[J]. Tellus A:Dynamic Meteorology and Oceanography, 1994, 46(4):512-528. [45] CHEN D K, ZEBIAK S E, BUSALACCHI A J, et al. An improved procedure for EI Niño forecasting:implications for predictability[J]. Science, 1995, 269(5231):1699-1702. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|