首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
GNSS-IR测量水位的精度评估和站点对比:以中国南海北部和日本南部站点为例
作者:叶脉1  李琳琳1 2  彭冬菊3  王培涛4  邱强5 6 7 
单位:1. 中山大学地球科学与工程学院, 广东省地球动力作用与地质灾害重点实验室, 广东 珠海 519082;
2. 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082;
3. 香港理工大学土地测量及地理资讯学系, 香港 999077;
4. 国家海洋环境预报中心, 北京 100081;
5. 中
关键词:GNSS-IR 长期水位 风暴潮 反演影响因素 
分类号:P731.34
出版年·卷·期(页码):2024·41·第一期(61-73)
摘要:
通过南海北部和日本多个实例,量化分析影响近岸全球卫星导航系统干涉反射计(GNSS-IR)反演潮位或风暴潮过程效果的主要影响因素。结果表明:接收机所能接收的卫星信号波段数量、反射信号功率对反演的时间分辨率和精度影响巨大。研究以香港HKQT站点为例量化多模多频GNSS-IR监测风暴潮的优势,同时展示日本J425站点在潮位站空缺地区记录完整风暴潮波形的能力。分别针对卫星信号接受波段、硬件配置、台站架设位置和架设高度等因素,对未来架设具有测量海平面能力的近岸GNSS站点提供具体的指导意见。
In this study, we quantitatively analyze the factors influencing the inversion accuracy of tide or storm surge processes at several representative nearshore GNSS(Global Navigation Satellite System)stations in the northern South China Sea and Japan. Our findings indicate that the number of satellite signal bands received by the receiver and the power of the reflected signal significantly affect the time resolution and accuracy of the inversion. This research quantifies the benefits derived from employing multi-mode and multi-frequency GNSS monitoring for storm surges in the Hong Kong HKQT station. Furthermore, it highlights the capability of the Japanese J425 site to capture a comprehensive storm surge waveform in regions lacking tide stations. In addition, this study offers specific recommendations for future deployment of nearshore GNSS stations equipped with sea level measurement capabilities, taking into consideration factors such as satellite signal receiving bands, hardware configurations, station installation locations, and installation heights.
参考文献:
[1] HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al. Mapping the global threat of land subsidence[J]. Science, 2021, 371(6524): 34-36.
[2] NICHOLLS R J, LINCKE D, HINKEL J, et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure[J]. Nature Climate Change, 2021, 11(4): 338-342.
[3] BENVENISTE J, CAZENAVE A, VIGNUDELLI S, et al. Requirements for a coastal hazards observing system[J]. Frontiers in Marine Science, 2019, 6: 348.
[4] LYNETT P, MCCANN M, ZHOU Z L, et al. Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’ apai eruption[J]. Nature, 2022, 609(7928): 728-733.
[5] TITOV V, RABINOVICH A B, MOFJELD H O, et al. The global reach of the 26 December 2004 sumatra tsunami[J]. Science, 2005, 309(5743): 2045-2048.
[6] LI L L, SWITZER A D, WANG Y, et al. A modest 0.5-m rise in sea level will double the tsunami hazard in Macau[J]. Science Advances, 2018, 4(8): eaat1180.
[7] 国家海洋局. 2017年中国海洋灾害公报[EB/OL]. 北京: 国家海洋局, 2018. (2023-12-26). Marine Early Warning and Monitoring Department of the Ministry of Natural Resources. Bulletin of China Marine Disasters in 2017[EB/OL]. (2023-12-26).
[8] LI L L, YANG J, LIN C Y, et al. Field survey of typhoon hato (2017) and a comparison with storm surge modeling in Macau[J]. Natural Hazards and Earth System Sciences, 2018, 18(12): 3167-3178.
[9] KNUTSON T R, MCBRIDE J L, CHAN J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3(3): 157-163.
[10] YANG J, CHEN M X. Potential impacts of flood risk with rising sea level in Macau: dynamic simulation from historical Typhoon Mangkhut (2018)[J]. Ocean Engineering, 2022, 246: 110605.
[11] ZHOU D X, LIU Y, FENG Y K, et al. Absolute sea level changes along the coast of China from tide gauges, gnss, and satellite altimetry[J]. Journal of Geophysical Research: Oceans, 2022, 127(9): e2022JC018994.
[12] 张云, 张杨阳, 孟婉婷, 等. 机载GNSS反射信号海面测高模型的研究[J]. 海洋学报, 2020, 42(3): 149-156. ZHANG Y, ZHANG Y Y, MENG W T, et al. Research on sea surface altimetry model of airborne GNSS reflected signal[J]. Haiyang Xuebao, 2020, 42(3): 149-156.
[13] The Climate Change Initiative Coastal Sea Level Team. Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002-2018[J]. Scientific Data, 2020, 7(1): 357.
[14] FRITZ H M, BLOUNT C, SOKOLOSKI R, et al. Hurricane katrina storm surge reconnaissance[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(5): 644-656.
[15] FRITZ H M, BLOUNT C D, ALBUSAIDI F B, et al. Cyclone gonu storm surge in oman[J]. Estuarine, Coastal and Shelf Science, 2010, 86(1): 102-106.
[16] TSUSHIMA H, HIRATA K, HAYASHI Y, et al. Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake[J]. Earth, Planets and Space, 2011, 63(7): 56.
[17] WOODWORTH P L, WÖPPELMANN G, MARCOS M, et al. Why we must tie satellite positioning to tide gauge data[J]. Eos, Transactions American Geophysical Union, 2017, 98(4): 13-15.
[18] WÖPPELMANN G, MARCOS M. Vertical land motion as a key to understanding sea level change and variability[J]. Reviews of Geophysics, 2016, 54(1): 64-92.
[19] GEORGIADOU Y, KLEUSBERG A. On carrier signal multipath effects in relative GPS positioning[J]. Manuscripta Geodaetica, 1988, 13(3): 172-179.
[20] ELÓSEGUI P, DAVIS J L, JALDEHAG R T K, et al. Geodesy using the global positioning system: the effects of signal scattering on estimates of site position[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9921-9934.
[21] LARSON K M. Unanticipated uses of the global positioning system[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 19-40.
[22] MCCREIGHT J L, SMALL E E, LARSON K M. Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western U. S. [J]. Water Resources Research, 2014, 50(8): 6892-6909.
[23] SIEGFRIED M R, MEDLEY B, LARSON K M, et al. Snow accumulation variability on a West Antarctic ice stream observed with GPS reflectometry, 2007-2017[J]. Geophysical Research Letters, 2017, 44(15): 7808-7816.
[24] LARSON K M, SMALL E E. Estimation of snow depth using L1 GPS signal-to-noise ratio data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4802-4808.
[25] WAN W, LARSON K M, SMALL E E, et al. Using geodetic GPS receivers to measure vegetation water content[J]. GPS Solutions, 2015, 19(2): 237-248.
[26] SMALL E E, LARSON K M, CHEW C C, et al. Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4759-4770.
[27] LARSON K M. GPS interferometric reflectometry: applications to surface soil moisture, snow depth, and vegetation water content in the western United States[J]. WIREs Water, 2016, 3(6): 775-787.
[28] LARSON K M, LÖFGREN J S, HAAS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in Space Research, 2013, 51(8): 1301-1310.
[29] LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge: a GPS reflection case study from kachemak bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204.
[30] HOLDEN L D, LARSON K M. Ten years of Lake Taupō surface height estimates using the GNSS interferometric reflectometry[J]. Journal of Geodesy, 2021, 95(7): 74.
[31] LARSON K M, RAY R D, WILLIAMS S D P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307.
[32] PENG D J, FENG L J, LARSON K M, et al. Measuring coastal absolute sea-level changes using GNSS interferometric reflectometry[J]. Remote Sensing, 2021, 13(21): 4319.
[33] LARSON K M, LAY T, YAMAZAKI Y, et al. Dynamic sea level variation from GNSS: 2020 shumagin earthquake tsunami resonance and hurricane laura[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091378.
[34] PENG D J, HILL E M, LI L L, et al. Application of GNSS interferometric reflectometry for detecting storm surges[J]. GPS Solutions, 2019, 23(2): 47.
[35] VU P L, HA M C, FRAPPART F, et al. Identifying 2010 Xynthia storm signature in GNSS-R-based tide records[J]. Remote Sensing, 2019, 11(7): 782.
[36] 何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178. HE X F, WANG J, WANG X L, et al. Retrieval of coastal typhoon storm surge using multi-GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178.
[37] ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR) [J]. GPS Solutions, 2018, 22(3): 80.
[38] ROUSSEL N, RAMILLIEN G, FRAPPART F, et al. Sea level monitoring and sea state estimate using a single geodetic receiver [J]. Remote Sensing of Environment, 2015, 171: 261-277.
[39] LÖFGREN J S, HAAS R. Sea level measurements using multifrequency GPS and GLONASS observations[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014: 50.
[40] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新 进展 与应 用前 景[J]. 测绘 学报, 2017, 46(10): 1389-1398. JIN S G, ZHANG Q Y, QIAN X D. New progress and application prospects of global navigation satellite system reflectometry (GNSS+R)[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398.
[41] 李征航, 黄劲松. GPS测量与数据处理[M]. 武汉: 武汉大学出版社, 2005.LI Z H, HUANG J S. GPS surveying and data processing[M]. Wuhan: Wuhan University Press, 2005.
[42] SORIA J L A, SWITZER A D, VILLANOY C L, et al. Repeat storm surge disasters of typhoon haiyan and its 1897 predecessor in the Philippines[J]. Bulletin of the American Meteorological Society, 2016, 97(1): 31-48.
[43] SPENCER T, BROOKS S M, EVANS B R, et al. Southern North Sea storm surge event of 5 December 2013: water levels, waves and coastal impacts[J]. Earth-Science Reviews, 2015, 146: 120-145.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn