首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
南海-西北太平洋季风槽及其与热带气旋的关系:不同再分析资料对比
作者:邢彩盈1 2  吴胜安1 2  朱晶晶1 2  胡德强1 2 
单位:1. 海南省南海气象防灾减灾重点实验室, 海南 海口 570203;
2. 海南省气候中心, 海南 海口 570203
关键词:南海-西北太平洋季风槽 再分析资料 CMA-RA 热带气旋活动 对比分析 
分类号:P732.3;P425.4+2
出版年·卷·期(页码):2023·40·第六期(78-89)
摘要:
利用1981—2020年中国气象局(CMA)热带气旋最佳路径数据集、CMA大气再分析资料(CMA-RA)、欧洲中期天气预报中心再分析资料(ERA5)及NCEP/NCAR再分析资料(NCEP-I),对比CMA-RA与ERA5、NCEP-I对南海-西北太平洋季风槽及其与南海热带气旋活动关系的表现能力,探讨CMA-RA的适用性。结果表明:不同资料均表征出南海和西北太平洋西段槽区低层气旋式涡旋明显、东段均匀的特征,CMA-RA和ERA5对低层涡度场描述的差异较小。两两资料间得到的季风槽强度的相关性较高,且为CMA-RA>ERA5>NCEP-I,对南海槽区的描述差异最大;对东伸点的刻画具有较高一致性,CMA-RA较ERA5和NCEP-I偏西;但对南北位置的刻画一致性较差,其中CMA-RA与ERA5的差异较小。所有资料均刻画出季风槽区中、低层强辐合、高层强辐散的结构,沿105°~160°E平均的涡度垂直剖面差异以CMA-RA与ERA5最小、CMA-RA与NCEP-I最大。CMA-RA季风槽与热带气旋频数关系最密切,ERA5次之,ERA5季风槽强度与热带气旋强度关系最密切,ERA5和CMA-RA季风槽东伸点与热带气旋强度关系较NCEP-I密切。总体来看,CMA-RA对季风槽及其与南海热带气旋活动关系的刻画具有与ERA5和NCEP-I相当的表现能力,且与ERA5的一致性高。
Based on the 1981-2020 data of the tropical cyclone best track data of China Meteorological Administration(CMA), CMA atmospheric reanalysis data(CMA-RA), the fifth generation ECMWF atmospheric reanalysis dataset(ERA5) and the first generation NCEP/NCAR atmospheric monthly reanalysis dataset(NCEPI), the performance and applicability of CMA-RA in describing the South China Sea-Western North Pacific monsoon trough and its relationship with tropical cyclone activity in the South China Sea are analyzed, with respect to the ERA5 and NCEP-I data. The results show that:Different datasets consistently represent the characteristics of obvious low level cyclonic vortex feature in the South China Sea and western Northwest Pacific, and uniform distribution in the eastern Northwest Pacific, CMA-RA and ERA5 have a little difference in describing the low-level vorticity. Different datasets have a high correlation in monsoon trough intensity, the overall intensity pattern is CMA-RA>ERA5>NCEP-I, and the intensity of the South China Sea monsoon trough varies greatly; The depictions of the eastern extension point have a high consistency, where that of CMA-RA is further west than those of ERA5 and NCEP-I; The descriptions of the north-south position have a lower consistency, the difference of CMA-RA and ERA5 is relatively small. All the datasets depict the vertical structure of strong convergence in the middle and lower layers and strong divergence in the upper layers of the monsoon trough region, and the difference between CMA-RA and ERA5 is the smallest, CMA-RA and NCEP-I is the largest in the vertical cross section of vorticity averaged over 105°~160°E. The monsoon trough of CMA-RA is most closely related to tropical cyclone frequency, followed by ERA5, the monsoon trough intensity of ERA5 is most closely related to tropical cyclone activity intensity, and the monsoon trough eastern extension point of ERA5 and CMA-RA have closer relationship with tropical cyclone activity intensity than that of NCEP-I. As a whole, CMA-RA has comparable performance with ERA5 and NCEP-I in characterizing the monsoon trough and its relationship with tropical cyclone activity in the South China Sea, and it's highly consistent with ERA5.
参考文献:
[1] GALL J S, FRANK W M. The role of equatorial Rossby waves in tropical cyclogenesis. PartⅡ:Idealized simulations in a monsoon trough environment[J]. Monthly Weather Review, 2010, 138(4):1383-1398.
[2] GUO B Y, GE X Y. Monsoon trough influences on multiple tropical cyclones events in the western North Pacific[J]. Atmospheric Science Letters, 2018, 19(9):e851.
[3] 钟剑,周庆,顾沈旦,等.西北太平洋热带气旋生成在不同最佳路径集资料中的差异特征分析[J].海洋预报, 2022, 39(3):37-46.ZHONG J, ZHOU Q, GU S D, et al. Analysis of the different characteristics of tropical cyclogenesis among different best track data in the northwest Pacific[J]. Marine Forecasts, 2022, 39(3):37-46.
[4] MOLINARI J, VOLLARO D. A subtropical cyclonic gyre associated with interactions of the MJO and the midlatitude jet[J].Monthly Weather Review, 2012, 140(2):343-357.
[5] FENG T, CHEN G H, HUANG R H, et al. Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions[J].International Journal of Climatology, 2014, 34(1):216-227.
[6] 冯涛,黄荣辉,陈光华,等.近年来关于西北太平洋热带气旋和台风活动的气候学研究进展[J].大气科学, 2013, 37(2):364-382.FENG T, HUANG R H, CHEN G H, et al. Progress in recent climatological research on tropical cyclone activity over the western North Pacific[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2):364-382.
[7] 周伟灿,张小雨,赵海坤,等.西北太平洋热带气旋频数异常与五类主要大尺度环流型的关系[J].大气科学学报, 2022, 45(1):30-39.ZHOU W C, ZHANG X Y, ZHAO H K, et al. Relationship between the anomalous frequency of tropical cyclone genesis over the western North Pacific and five major large-scale circulation patterns[J]. Transactions of Atmospheric Sciences, 2022, 45(1):30-39.
[8] 邓小花,周群,张润宇,等. RITC活跃年份的气候特征及个例研究[J].海洋预报, 2019, 36(2):45-56.DENG X H, ZHOU Q, ZHANG R Y, et al. Climatic charatistics of rapidly intensifying tropical cyclones and a case study[J]. Marine Forecasts, 2019, 36(2):45-56.
[9] 周群,黄焕卿,张润宇,等. 2019年11月西北太平洋热带气旋生成频数异常偏多的成因分析[J].海洋预报, 2021, 38(1):18-25.ZHOU Q, HUANG H Q, ZHANG R Y, et al. Study of the causation of anomaly higher tropical cyclone genesis frequency over the western North Pacific in November 2019[J]. Marine Forecasts, 2021, 38(1):18-25.
[10] HUANG Q J, GUO B Y, GE X Y. Simulations on multiple tropical cyclones event associated with monsoon trough over the western North Pacific[J]. Meteorological Applications, 2022, 29(6):e2104.
[11] SCHRECK C J, MOLINARI J, AIYYER A. A global view of equatorial waves and tropical cyclogenesis[J]. Monthly Weather Review, 2012, 140(3):774-788.
[12] WU L, WEN Z P, WU R G. Influence of the monsoon trough on westward-propagating tropical waves over the Western North Pacific. Part I:Observations[J]. Journal of Climate, 2015, 28(18):7108-7127.
[13] 曹西,陈光华,黄荣辉,等.夏季西北太平洋热带辐合带的强度变化特征及其对热带气旋的影响[J].热带气象学报, 2013, 29(2):198-206.CAO X, CHEN G H, HUANG R H, et al. The intensity variation of the summer intertropical convergence zone in Western North Pacific and its impact on tropical cyclones[J]. Journal of Tropical Meteorology, 2013, 29(2):198-206.
[14] WU L, WEN Z P, WU R G. Influence of the monsoon trough on westward-propagating tropical waves over the Western North Pacific. Part II:Energetics and numerical experiments[J]. Journal of Climate, 2015, 28(23):9332-9349.
[15] HUO L W, GUO P W. Impact of convection over the South China Sea on tropical cyclone motion over the western North Pacific during summer monsoon[J]. Journal of Tropical Meteorology,2017, 23(1):58-67.
[16] FENG X F, WU L G. Roles of interdecadal variability of the western North Pacific monsoon trough in shifting tropical cyclone formation[J]. Climate Dynamics, 2022, 58(1-2):87-95.
[17] 高建芸,吕心艳,张秀芝,等.南海-西北太平洋季风槽中热带气旋群发的研究Ⅱ.影响机制研究[J].海洋学报, 2011, 33(3):28-37.GAO J Y, LV X Y, ZHANG X Z, et al. Research on the cluster of tropical cyclogenesis in the South China Sea-Western North Pacific monsoon troughⅡ. Mechanism of the influence[J]. Acta Oceanologica Sinica, 2011, 33(3):28-37.
[18] 曾瑾瑜,林金凎,余洋,等. 2109号台风"卢碧" 路径和强度特征及预报偏差分析[J].海洋预报, 2022, 39(3):10-24.ZENG J Y, LIN J G, YU Y, et al. An analysis on the track and intensity characteristics and forecast deviation of typhoon 2109"Lupit"[J]. Marine Forecasts, 2022, 39(3):10-24.
[19] 冯涛,黄荣辉,杨修群,等. 2004年与2006年7-9月西北太平洋上空大尺度环流场与天气尺度波动的差别及其对热带气旋生成的影响[J].大气科学, 2016, 40(1):157-175.FENG T, HUANG R H, YANG X Q, et al. Differences between the large-scale circulations and synoptic-scale waves in July-September 2004 and those in 2006 and their impacts on tropical cyclogenesis over the western North Pacific[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(1):157-175.
[20] CAO X, WU R G. Simulations of development of tropical disturbances associated with the monsoon trough over the western North Pacific[J]. Atmospheric Science Letters, 2018, 19(2):e801.
[21] 王旻燕,姚爽,姜立鹏,等.我国全球大气再分析(CRA-40)卫星遥感资料的收集和预处理[J].气象科技进展, 2018, 8(1):158-163.WANG M Y, YAO S, JIANG L P, et al. Collection and preprocessing of satellite remote-sensing data in CRA-40(CMA's Global Atmospheric Reanalysis) [J]. Advances in Meteorological Science and Technology, 2018, 8(1):158-163.
[22] 尹金方,梁旭东,陈锋,等.东亚区域大气再分析技术研究及资料集建设[J].气象科技进展, 2018, 8(1):79-84.YIN J F, LIANG X D, CHEN F, et al. Development of atmospheric data assimilation techniques and regional reanalysis datasets in the East Asia[J]. Advances in Meteorological Science and Technology, 2018, 8(1):79-84.
[23] 周自江,曹丽娟,廖捷,等.水文气象信息概述:观测、融合与再分析[J].气象, 2022, 48(3):272-283.ZHOU Z J, CAO L J, LIAO J, et al. Overview of hydrometeorological information:Obeservation, data fusion and reanalysis[J]. Meteorological Monthly, 2022, 48(3):272-283.
[24] 王彩霞,黄安宁,郑鹏,等.中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J].高原气象,2022, 41(5):1325-1334.WANG C X, HUANG A N, ZHENG P, et al. Applicability evaluation of China's first generation of global land surface reanalysis(CRA40/Land) air temperature and precipitation products in China mainland[J]. Plateau Meteorology, 2022, 41(5):1325-1334.
[25] LI C X, ZHAO T B, SHI C X, et al. Evaluation of daily precipitation product in China from the CMA global atmospheric interim reanalysis[J]. Journal of Meteorological Research, 2020,34(1):117-136.
[26] YANG J X, HUANG M T, ZHAI P M. Performance of the CRA-40/Land, CMFD, and ERA-Interim datasets in reflecting changes in surface air temperature over the Tibetan Plateau[J]. Journal of Meteorological Research, 2021, 35(4):663-672.
[27] ZHANG J P, ZHAO T B, LI Z, et al. Evaluation of surface relative humidity in China from the CRA-40 and current reanalyses[J].Advances in Atmospheric Sciences, 2021, 38(11):1958-1976.
[28] 刘维成,徐丽丽,朱姜韬,等.再分析资料和陆面数据同化资料土壤湿度产品在中国北方地区的适用性评估[J].大气科学学报, 2022, 45(4):616-629.LIU W C, XU L L, ZHU J T, et al. Evaluation of reanalysis and LDAS soil moisture products over northern China[J].Transactions of Atmospheric Sciences, 2022, 45(4):616-629.
[29] 张德杰,师春香,张涛,等.多种资料的总云量产品在中国区域的对比分析[J].高原气象, 2022, 41(3):803-813.ZHANG D J, SHI C X, ZHANG T, et al. Comparative analysis of the total cloud cover products of various data in China[J]. Plateau Meteorology, 2022, 41(3):803-813.
[30] YU X J, ZHANG L X, ZHOU T J, et al. The Asian subtropical westerly jet stream in CRA-40, ERA5, and CFSR reanalysis data:comparative assessment[J]. Journal of Meteorological Research,2021, 35(1):46-63.
[31] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4):690-699.
[32] 邢彩盈,吴慧,胡德强,等. CFSv2模式产品在汛期海南热带气旋频数预测模型中的应用[J].气象科学, 2017, 37(5):666-672.XING C Y, WU H, HU D Q, et al. Application of CFSv2 products in tropical cyclone frequency prediction model in Hainan during flood season[J]. Journal of the Meteorological Sciences, 2017, 37(5):666-672.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn