首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
海气边界层内风电场尾流及功率特性的中尺度数值模拟研究
作者:乐可定1  郁冶2  王异成3  吴春雷4  王强4  罗坤4  樊建人4 
单位:1. 浙江浙能国电投嵊泗海上风力发电有限公司, 浙江 舟山 202450;
2. 国家电投集团浙江新能源有限公司, 浙江 杭州 310016;
3. 杭州意能电力技术有限公司, 浙江 杭州 310027;
4. 浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
关键词:海洋大气边界层 海上风电场 海面 尾流特性 功率输出 
分类号:P732
出版年·卷·期(页码):2023·40·第六期(33-40)
摘要:
研究基于中尺度数值天气预测(WRF)模型,耦合海洋模型和风电场参数化方案,探讨了海洋边界层下的海上风电场尾流效应和功率输出特性。结果发现:海上风电场尾流易发生混合,导致较强的风速亏损,严重影响下游风力机的功率输出。由于大气和海洋之间的动量、热量及水汽等通量交换,速度亏损表现出更强的水平扩散,风电场尾流恢复加速,最终尾流长度缩短。另外,风电场的尾流特性和功率输出与风力机布局相关,海气相互作用增强了尾流延伸的稳定性,削弱了风电场的非局地性影响。研究表明使用多物理耦合模型探究海上风电场运行特性是尤为关键的。
In this study, we explore the wake flow and power output of an offshore wind farm using the WRF model, coupling to an ocean model and a wind farm parameterization. It is found that the wake flow of the offshore wind farm significantly affects the operation characteristics of the whole farm. The wake flows of offshore wind turbines are easy to mix, result in a strong wind speed deficit, leading to the decline of power output of downstream wind turbines. The velocity deficit exhibits strong horizontal spread due to the flux exchange between air and ocean, accelerating the recovery of the wake flow, and ultimately leading to a reduction in the length of wake flow. Meanwhile, the wake characteristics and power output of wind farm are related to the layout and installed capacity of wind turbines. The air-ocean interaction increases the stability of wake flow extension, and help to reduce non-local impact. In general, it is important to consider the interaction between air,ocean and the wind farm itself.
参考文献:
[1] 蔡继峰,胡高硕,石浩.国内外风能资源评估标准研究综述[J].风能, 2021(12):54-63.CAI J F, HU G S, SHI H. A review of research on wind energy resource evaluation standards at home and abroad[J]. Wind Energy,2021(12):54-63.
[2] CHEN S S, ZHAO W, DONELAN M A, et al. Directional windwave coupling in fully coupled atmosphere-wave-ocean models:results from CBLAST-hurricane[J]. Journal of the Atmospheric Sciences, 2013, 70(10):3198-3215.
[3] LEE C Y, CHEN S S. Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere-ocean model[J].Monthly Weather Review, 2014, 142(5):1927-1944.
[4] CHARNOCK H. Wind stress on a water surface[J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(350):639-640.
[5] JENKINS A D, PASKYABI M B, FER I, et al. Modelling the effect of ocean waves on the atmospheric and ocean boundary layers[J].Energy Procedia, 2012, 24:166-175.
[6] TAYLOR P K, YELLAND M J. The dependence of sea surface roughness on the height and steepness of the waves[J]. Journal of Physical Oceanography, 2001, 31(2):572-590.
[7] GOLBAZI M, ARCHER C L. Methods to estimate surface roughness length for offshore wind energy[J]. Advances in Meteorology, 2019, 2019:5695481.
[8] BAHAMONDE M I, LITRÁN S P. Study of the energy production of a wind turbine in the open sea considering the continuous variations of the atmospheric stability and the sea surface roughness[J]. Renewable Energy, 2019, 135:163-175.
[9] PLATIS A, SIEDERSLEBEN S K, BANGE J, et al. First in situ evidence of wakes in the far field behind offshore wind farms[J].Scientific Reports, 2018, 8:2163.
[10] HARRIS R A, ZHOU L M, XIA G. Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa[J].Remote Sensing, 2014, 6(12):12234-12246.
[11] SMITH C M, BARTHELMIE R J, PRYOR S C. In situ observations of the influence of a large onshore wind farm on nearsurface temperature, turbulence intensity and wind speed profiles[J]. Environmental Research Letters, 2013, 8(3):034006.
[12] MILLER L M, KEITH D W. Climatic Impacts of Wind Power.Joule, 2018, 2:2618-2632.
[13] VAUTARD R, THAIS F, TOBIN I, et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms[J]. Nature Communications, 2014,5:3196.
[14] WANG C, PRINN R G. Potential climatic impacts and reliability of very large-scale wind farms[J]. Atmospheric Chemistry and Physics, 2010, 10(4):2053-2061.
[15] BLAHAK U, GORETZKI B, MEIS J. A simple parameterization of drag forces induced by large wind farms for numerical weather prediction models[C]//Proceedings of European Wind Energy Conference and Exhibition. 2010:4577-4585.
[16] FITCH A C, OLSON J B, LUNDQUIST J K, et al. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model[J]. Monthly Weather Review, 2012, 140(9):3017-3038.
[17] JIMÉNEZ P A, NAVARRO J, PALOMARES A M, et al.Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale:a composite-based analysis with the weather research and forecasting model over horns rev[J]. Wind Energy,2015, 18(3):559-566.
[18] ARCHER C L, WU S C, MA Y L, et al. Two corrections for turbulent kinetic energy generated by wind farms in the WRF model[J]. Monthly Weather Review, 2020, 148(12):4823-4835.
[19] WU C L, LUO K, WANG Q, et al. A refined wind farm parameterization for the weather research and forecasting model[J]. Applied Energy, 2022, 306:118082.
[20] WANG Q, LUO K, YUAN R, et al. Wake and performance interference between adjacent wind farms:Case study of Xinjiang in China by means of mesoscale simulations[J]. Energy, 2019,166:1168-1180.
[21] PLATIS A, HUNDHAUSEN M, MAUZ M, et al. Evaluation of a simple analytical model for offshore wind farm wake recovery by in situ data and Weather Research and Forecasting simulations[J].Wind Energy, 2021, 24(3):212-228.
[22] WU L C, SHAO M M, SAHLÉE E. Impact of air-wave-sea coupling on the simulation of offshore wind and wave energy potentials[J]. Atmosphere, 2020, 11(4):327.
[23] SCHNEEMANN J, ROTT A, DÖRENKÄMPER M, et al. Cluster wakes impact on a far-distant offshore wind farm's power[J].Wind Energy Science, 2020, 5(1):29-49.
[24] FITCH A C, OLSON J B, LUNDQUIST J K. Parameterization of wind farms in climate models[J]. Journal of Climate, 2013, 26(17):6439-6458.
[25] SRINIVAS C V, MOHAN G M, NAIDU C V, et al. Impact of airsea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3-D ocean model coupled to ARW[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(16):9400-9421.
[26] WENTZ F J, MEISSNER T, GENTEMANN C, et al. Remote sensing systems GCOM-W1 AMSR2 daily environmental suite on 0.25 deg grid, Version 08.2[J]. Remote Sensing Systems SR,2014.
[27] GREESHMA M, SRINIVAS C V, PRASAD K B R R H, et al.Sensitivity of tropical cyclone predictions in the coupled atmosphere-ocean model WRF-3DPWP to surface roughness schemes[J]. Meteorological Applications, 2019, 26(2):324-346.
[28] 乐可定,郁冶,王异成,等.基于中尺度模式的大气稳定性对风电场运行特性的影响[J].排灌机械工程学报, 2023:1-7.LE K D, YU Y, WANG Y C, et al. Influence of atmospheric stability on the operating characteristics of wind farms based on the mesoscale situations[J]. Journal of Drainage and Irrigation Machinery Engineering, 2023:1-7.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn