首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
P-RSHMU蒸发波导预测与湍流通量相关性分析
作者:张利军  张超  王红光  郭相明  韩杰  张守宝 
单位:中国电波传播研究所, 山东 青岛 266107
关键词:P-RSHMU模型 潜热通量 动量通量 感热通量 相关系数 
分类号:P731.26
出版年·卷·期(页码):2023·40·第五期(66-72)
摘要:
为更好地揭示蒸发波导形成机理与近海面湍流通量的定量相关关系,基于海上平台实测水文气象数据,引入稳定条件以及不稳定条件下预测性能较好的P-RSHMU蒸发波导模型,定量给出该模型预测蒸发波导高度与近海面湍流通量的相关分析。结果表明:P-RSHMU模型预测有效抑制了稳定条件下蒸发波导高度为40 m的情形;针对所有数据(不区分稳定条件),该模型计算的蒸发波导高度与潜热通量相关系数为0.92,与动量通量相关系数为-0.41,与感热通量的相关系数为-0.12;区分稳定条件,得到3种情形下蒸发波导高度与潜热通量均呈现显著相关,相关系数均大于0.9。这些结果为丰富蒸发波导的形成机理以及内涵提供进一步的数据支撑。
In order to better reveal the quantitative correlation between the formation mechanism of evaporation duct and turbulent flux near the sea surface, the P-RSHMU evaporation duct model is introduced because of its good prediction performance under stable and unstable conditions.The correlation analysis between the height of evaporation duct predicted by P-RSHMU model and turbulent flux is quantitatively given based on the measured hydro-meteorological data collected by the offshore platforms.The results show that: the P-RSHMU model can effectively suppress the evaporation duct height of 40m under stable conditions. For all data (regardless of stability conditions), the correlation coefficient between evaporation duct height and latent heat flux calculated by this model is 0.92, the correlation coefficient with momentum flux is -0.41, and the correlation coefficient with sensible heat flux is -0.12. In the three cases, the height of evaporation duct is significantly correlated with the latent heat flux, and the correlation coefficient is greater than 0.9. These results provide further data support for enriching the formation mechanism and connotation of evaporation duct.
参考文献:
[1] JESKE H. State and limits of prediction methods of radar wave propagation conditions over sea[C]//Modern Topics in Microwave Propagation and Air-Sea Interaction. Sorrento: Springer, 1973: 130- 148.
[2] ROTHERAM S. Radiowave propagation in the evaporation duct[J]. Maconi Rev., 1974, 37(192): 18-40.
[3] FAIRALL C W, DAVIDSON K L. Evaporation duct measurements in the mid-Atlantic[R]. Navy postgraduate school., Monterey, Calif., 1978.
[4] PAULUS R A. Practical application of an evaporation duct model [J]. Radio Science, 1985, 20(4): 887-896.
[5] MUSSON-GENON L, GAUTHIER S, BRUTH E. A Simple method to determine evaporation duct height in the sea surface boundary layer[J]. Radio Science, 1992, 27(5): 635-644.
[6] BABIN S M, YOUNG G S, CARTON J A. A new model of the oceanic evaporation duct[J]. Journal of Applied Meteorology, 1997, 36(3): 193-204.
[7] FREDERICKSON P A, DAVIDSON K L, GOROCH A K. Operational bulk evaporation duct model for Moriah, Draft Version 1.2. Naval Postgraduate School, 2000.
[8] 刘成国, 黄际英, 江长荫, 等. 用伪折射率和相似理论计算海上蒸发波导剖面[J]. 电子学报, 2001, 29(7): 970-972. LIU C G, HUANG J Y, JIANG C Y, et al. Modeling Evaporation duct over sea with Pseudo-Refractivity and similarity theory[J]. Acta Electronica Sinica, 2001, 29(7): 970-972.
[9] IVANOV V K, SHALYAPIN V N, LEVADNYI Y V. Determination of the evaporation duct height from standard meteorological data[J]. Izvestiya, Atmospheric and Oceanic Physics, 2007, 43(1): 36-44.
[10] 张永刚, 焦林, 张旭, 等. 海洋声光电波导效应及应用[M]. 北京: 电子工业出版社, 2014. ZHANG Y G, JIAO L, ZHANG X, et al. Ocean acoustic and optic and electromagnetic duct effects and applications[M]. Beijing: Publishing House of Electronics Industry, 2014.
[11] LIANG X, TIAN B, YU P, et al. Universal functions of relative humidity and temperature profiles in the South China Sea[J]. Journal of Coastal Research, 2020, 99(sp1): 263-269.
[12] 张利军, 郭相明, 李建儒. 蒸发波导RSHMU模型预测性能分析[J]. 微波学报, 2021, 37(4): 58-63. ZHANG L J, GUO X M, LI J R. Prediction performance analysis of evaporation duct RSHMU model[J]. Journal of Microwaves, 2021, 37(4): 58-63.
[13] 张利军, 李建儒, 王红光, 等. 改进的蒸发波导RSHMU模型及预测性能分析[J]. 电波科学学报, 2022, 37(2): 198-205. ZHANG L J, LI J R, WANG H G, et al. An improved evaporation duct RSHMU model and prediction performance analysis[J]. Chinese Journal of Radio Science, 2022, 37(2): 198-205.
[14] 郭相明, 康士峰, 张玉生, 等. 蒸发波导模型特征及其适用性研究[J]. 海洋预报, 2013, 30(5): 75-83. GUO X M, KANG S F, ZHANG Y S, et al. Study on the characteristics of evaporation duct models and their applicability [J]. Marine forecasts, 2013, 30(5): 75-83.
[15] 郭相明, 康士峰, 张玉生, 等. 应用湍流通量理论分析蒸发波导机理[J]. 海洋技术, 2009, 28(2): 96-100. GUO X M, KANG S F, ZHANG Y S, et al, Analysis of mechanism of evaporation duct using air-sea interface turbulent fluxes[J]. Journal of Ocean Technology, 2009, 28(2): 96-100.
[16] 张超, 张利军, 王红光, 等. 海上湍流通量与蒸发波导高度计算及相关性分析[J]. 电波科学学报, 2020, 35(6): 832-840. ZHANG C, ZHANG L J, WANG H G, et al. Calculation and correlation analysis of turbulent flux and evaporation duct height at sea[J]. Chinese Journal of Radio Science, 2020, 35(6): 832-840.
[17] FAIRALL C W, BRADLEY E F, HARE J E, et al. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm[J]. Journal of Climate, 2003, 16(4): 571-591.
[18] SMITH S D, FAIRALL C W, GEERNAERT G L, et al. Air-sea fluxes: 25 years of progress[J]. Boundary-Layer Meteorology, 1996, 78(3-4): 247-290.
[19] NEWTON D A. COAMPS modeled surface layer refractivity in the roughness and evaporation duct experiment 2001[D]. Monterey: Naval Postgraduate School, 2003.
[20] 陈蓉, 黄健, 万齐林, 等. 茂名博贺海洋气象科学试验基地建设与观测进展[J]. 热带气象学报, 2011, 27(3): 417-426. CHEN R, HUANG J, WAN Q L, et al. An overview on the construction and observation progress of marine meteorological science experiment base At Bohe, Maoming[J]. Journal of Tropical Meteorology, 2011, 27(3): 417-426.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn