首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
两次西风槽影响下北上台风导致的强降水对比分析
作者:陈宏  卢焕珍  孙密娜  韩婷婷 
单位:天津市气象台, 天津 300074
关键词:台风 西风槽 位涡 水汽输送 
分类号:P444
出版年·卷·期(页码):2023·40·第四期(83-96)
摘要:
利用台风最佳路径数据、逐时自动站资料、美国国家环境预报中心/美国国家大气研究中心(NCEP/NCAR)1°×1°再分析资料、FY-4A卫星的云顶亮温和常规观测资料,对比分析了2106号台风“烟花”和1810号台风“安比”在北上过程中受到西风带高空槽影响导致天津地区强降水落区产生差异的原因。结果表明:两次台风在北上过程中,均受到高空槽和冷空气的影响,但是由于台风结构不同,西风槽和北上台风结合后引发的暴雨位置和强度有所区别。台风“安比”维持正压结构,降水持续时间短、降水强度大,大暴雨主要集中在天津西部;而台风“烟花”存在斜压性,降水持续时间长、效率低,大暴雨主要位于天津东部。在台风“安比”期间,副热带高压东撤,槽后冷空气渗透与偏东南暖湿低空急流交汇共同导致大气层结向不稳定状态发展,中尺度云团发展,正涡度强度明显增大,高层高位涡气流到达对流层低层,位涡下传引起低层位涡增大,强降水与对流层低层螺旋度中心、锋区以及偏东水汽输送关系密切;而台风“烟花”与西风槽合并后中尺度云团不明显,暴雨区西侧和北侧的θse密集带发生倾斜,斜压性增强,强降水站点主要位于锋生函数和假相当位温的梯度区,偏南水汽输送为持续降水提供水汽来源,降水的雨强较小,以稳定性降水为主。
Based on typhoon best track data, hourly automatic weather station data, National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) 1°×1° reanalysis data, cloud top brightness temperature data from FY-4A satellite and conventional observation data, a comparative analysis of heavy precipitation in Tianjin during Typhoon “In-Fa” (2106) and Typhoon “Ampil” (1810) is conducted in this study, specifically both these two northward-moving typhoons were affected by high-altitude trough in the westerly belt. The results show that the two typhoons were both affected by high-altitude troughs and cold air during their northward movement. However, due to the different typhoon structure, location and intensity of the rainstorm are different after the two typhoons encounter the westerly trough. Typhoon "Ampil" maintained a barotropic structure, thus the associated precipitation had a short duration and high intensity, and the heavy rainstorm mainly located in the western Tianjin. However, Typhoon "In-Fa" had a baroclinic property, and the associated precipitation had a long duration and low intensity, and the heavy rainstorm mainly located in the eastern Tianjin. During the northward movement of Typhoon "Ampil", the subtropical high moved eastward, which was conducive to convergence of the cold air behind the trough and the warm-humid low-level jet from the southeast, leading to the development of atmospheric stratification instability and mesoscale cloud clusters. The high-level high potential vortex air flow reached the lower troposphere, and the downward propagation of the potential vortex caused the increases of the low-level potential vortex. Heavy rainfall is closely related to the helicity center, frontal zone and easterly water vapor transport in the lower troposphere. Typhoon "In-Fa" merged with the westerly trough and evolved into a high-altitude trough, but the mesoscale cloud clusters were not obvious, and the dense belts of θse on the west and north sides of the heavy rain area inclined. Heavy rainfall mainly located in the gradient area of frontogenesis function and pseudo-equivalent potential temperature. The southerly water vapor transport provided the source for continuous precipitation. The associated precipitation was characterized by low intensity and high stability.
参考文献:
[1] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 科学出版社, 1979: 281-283. CHEN L S, DING Y H. Introduction to western Pacific typhoon [M]. Beijing: Science Press, 1979: 281-283.
[2] BROWNING K A. The dry intrusion perspective of extra-tropical cyclone development[J]. Meteorological Applications, 1997, 4(4): 317-324.
[3] 雷小途, 陈联寿. 热带气旋的登陆及其与中纬度环流系统相互作用的研究[J]. 气象学报, 2001, 59(5): 602-615. LEI X T, CHEN L S. Tropical cyclone landfalling and its interaction with mid-latitude circulation systems[J]. Acta Meteorologica Sinica, 2001, 59(5): 602-615.
[4] 程正泉, 陈联寿, 徐祥德, 等. 近10年中国台风暴雨研究进展[J]. 气象, 2005, 31(12): 3-9. CHENG Z Q, CHEN L S, XU X D, et al. Research progress on typhoon heavy rainfall in China for last ten years[J]. Meteorological Monthly, 2005, 31(12): 3-9.
[5] 端义宏, 陈联寿, 梁建茵, 等. 台风登陆前后异常变化的研究进展[J]. 气象学报, 2014, 72(5): 969-986. DUAN Y H, CHEN L S, LIANG J Y, et al. Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteorologica Sinica, 2014, 72(5): 969-986.
[6] 岳彩军.“海棠”台风降水非对称分布特征成因的定量分析[J]. 大气科学, 2009, 33(1): 51-70. YUE C J. A quantitative study of asymmetric characteristic genesis of precipitation associated with Typhoon Haitang[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1): 51-70.
[7] 朱佩君, 郑永光, 陶祖钰. 发生在中国大陆的台风变性加强过程分析[J]. 热带气象学报, 2003, 19(2): 157-162. ZHU P J, ZHENG Y G, TAO Z Y. Analysis of the extratropical transition of tropical cyclone over mainland of China[J]. Journal of Tropical Meteorology, 2003, 19(2): 157-162.
[8] 孙建华, 齐琳琳, 赵思雄.“9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究[J]. 气象学报, 2006, 64(1): 57-71. SUN J H, QI L L, ZHAO S X. A study on mesoscale convective systems of the severe heavy rainfall in north China by“9608” typhoon[J]. Acta Meteorologica Sinica, 2006, 64(1): 57-71.
[9] 周玲丽, 翟国庆, 王东海, 等. 0713号“韦帕”台风暴雨的中尺度数值研究和非对称性结构分析[J]. 大气科学, 2011, 35(6): 1046-1056. ZHOU L L, ZHAI G Q, WANG D H, et al. Mesoscale numerical study of the rainstorm and asymmetric structure of 0713 Typhoon Wipha[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(6): 1046-1056.
[10] 赵宇, 崔晓鹏, 高守亭. 引发华北特大暴雨过程的中尺度对流系统结构特征研究[J]. 大气科学, 2011, 35(5): 945-962. ZHAO Y, CUI X P, GAO S T. A study of structure of mesoscale systems producing a heavy rainfall event in North China[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(5): 945-962.
[11] 赵宇, 李静, 杨成芳. 与台风“海鸥”相关暴雨过程的水汽和干侵入研究[J]. 高原气象, 2016, 35(2): 444-459. ZHAO Y, LI J, YANG C F. Study on water vapor and dry intrusion in a heavy rainfall event associated with Typhoon Haiou [J]. Plateau Meteorology, 2016, 35(2): 444-459.
[12] ATALLAH E, BOSART L F, AIYYER A R. Precipitation distribution associated with landfalling tropical cyclones over the eastern United States[J]. Monthly Weather Review, 2007, 135(6): 2185-2206.
[13] 任丽, 王承伟, 张桂华, 等. 台风布拉万(1215)深入内陆所致的大暴雨成因分析[J]. 气象, 2013, 39(12): 1561-1569. REN L, WANG C W, ZHANG G H, et al. Analysis of severe rainstorm caused by Typhoon Bolaven (1215) invading interior territory[J]. Meteorological Monthly, 2013, 39(12): 1561-1569.
[14] 孙力, 董伟, 药明, 等. 1215号“布拉万”台风暴雨及降水非对称性分布的成因分析[J]. 气象学报, 2015, 73(1): 36-49. SUN L, DONG W, YAO M, et al. A diagnostic analysis of the causes of the torrential rain and precipitation asymmetric distribution of Typhoon Bolaven (1215) [J]. Acta Meteorologica Sinica, 2015, 73(1): 36-49.
[15] 刘晓波, 邹兰军, 夏立. 台风罗莎引发上海暴雨大风的特点及成因[J]. 气象, 2008, 34(12): 72-78. LIU X B, ZOU L J, XIA L. Analysis on the characteristics and reason of heavy rain and strong wind in Shanghai caused by Typhoon Krosa[J]. Meteorological Monthly, 2008, 34(12): 72-78.
[16] 王承伟, 齐铎, 徐玥, 等. 冷空气入侵台风“灿鸿”引发的东北暴雨分析[J]. 高原气象, 2017, 36(5): 1257-1266. WANG C W, QI D, XU Y, et al. Analysis of rainstorm induced by interaction between Typhoon Chan-hom (2015) and Cold air in Northeast China[J]. Plateau Meteorology, 2017, 36(5): 1257-1266.
[17] 陈宏, 杨晓君, 尉英华, 等. 干冷空气入侵台风“海棠”残余低压引发的华北地区大暴雨分析[J]. 暴雨灾害, 2020, 39(3): 241-249. CHEN H, YANG X J, WEI Y H, et al. Analysis of the heavy rain in North China for dry cold air intruding into typhoon "Begonia" depression[J]. Torrential Rain and Disasters, 2020, 39(3): 241-249.
[18] 盛芳, 杨旺文, 吴松涛. 相似路径超强台风“尼伯特”(1601)和“莫兰蒂”(1614)对金华降水影响对比分析[J]. 海洋预报, 2017, 34(6): 73-82. SHENG F, YANG W W, WU S T. Analysis of contrastive precipitation caused by super typhoon "Nepartak" (1601) and "Meranti" (1614) in similar path for Jing Hua[J]. Marine Forecasts, 2017, 34(6): 73-82.
[19] 陈宏, 杨晓君, 易笑园, 等. 北上台风“安比”后期两个阶段暴雨落区分布的差异性分析[J]. 高原气象, 2021, 40(5): 1087-1100. CHEN H, YANG X J, YI X Y, et al. Analysis of difference in distribution of rainstorms in the later two stages of northwardmoving Typhoon Ampil[J]. Plateau Meteorology, 2021, 40(5): 1087-1100.
[20] 梁军, 李英, 张胜军, 等. 辽东半岛热带气旋暴雨的中尺度结构及复杂地形的影响[J]. 高原气象, 2014, 33(4): 1154-1163. LIANG J, LI Y, ZHANG S J, et al. Mesoscale structure of torrential rain tropical cyclone over Liaodong Peninsula and the effect of complicated topography[J]. Plateau Meteorology, 2014, 33(4): 1154-1163.
[21] 岳彩军. Q矢量、螺旋度、位涡及位涡反演在台风暴雨研究中的应用进展[J]. 暴雨灾害, 2014, 33(3): 193-201. YUE C J. Progress in application study of Q vector, helicity, potential vorticity and its inversion to torrential rainfall associated with typhoon[J]. Torrential Rain and Disasters, 2014, 33(3): 193-201.
[22] 曹宗元, 陈淑琴, 刘飞, 等. 相似路径台风“天鹅”(1515)和“珊珊” (0613)降水差异分析[J]. 海洋预报, 2018, 35(3): 48-56. CAO Z Y, CHEN S Q, LIU F, et al. Analysis on precipitation difference between the similar track typhoon "GONI" (1515) and "Shanshan" (0613)[J]. Marine Forecasts, 2018, 35(3): 48-56.
[23] 寿绍文, 励申申, 姚秀萍. 中尺度气象学[M]. 北京: 气象出版社, 2003. SHOU S W, LI S S, YAO X P. Mesoscale Meteorology[M]. Beijing: China Meteorological Press, 2003.
[24] 李志楠, 郑新江, 赵亚民, 等. 9608号台风低压外围暴雨中尺度云团的发生发展[J]. 热带气象学报, 2000, 16(4): 316-326. LI Z N, ZHENG X J, ZHAO Y M, et al. The mesoscale torrential rain cloud cluster from the low pressure periphery area of the Typhoon No. 9608[J]. Journal of Tropical Meteorology, 2000, 16(4): 316-326.
[25] NINOMIYA K. Characteristics of Baiu Front as a predominant subtropical front in the summer northern hemisphere[J]. Journal of the Meteorological Society of Japan. Ser. II, 1984, 62(6): 880- 894.
[26] 陶祖钰. 基础理论与预报实践[J]. 气象, 2011, 37(2): 129-135. TAO Z Y. Basic theories and forecast practices[J]. Meteorological Monthly, 2011, 37(2): 129-135.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn