首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于南海温盐流数值产品的南海气候态温跃层、温度锋和中尺度涡评估
作者:尹汉军1  谢波涛1  黄必桂1  朱宇航2 3  彭世球2 3 4  李毅能2  程高磊2 
单位:1. 中海油研究总院有限责任公司, 北京 100027;
2. 中国科学院南海海洋研究所 热带海洋环境国家重点实验室, 广东 广州 510301;
3. 北部湾大学 广西北部湾海洋灾害研究重点实验室, 广西 钦州 535011;
4. 南方海洋科学与工程广东省实验室(广州), 广东 广州 511458
关键词:南海 海洋数值产品 温跃层 温度锋 中尺度涡 
分类号:P731.1
出版年·卷·期(页码):2023·40·第四期(34-46)
摘要:
基于区域海洋模式(ROMS)构建了一套覆盖南海区域40 a涡分辨率的逐时温盐流数值产品OCEAN_SCS,并利用独立观测资料和前人的研究成果对比评估了OCEAN_SCS数据集对南海温跃层、温度锋和中尺度涡的模拟效果。评估结果表明:OCEAN_SCS数据集总体上对南海温跃层、温度锋和中尺度涡的模拟效果较好,与前人的研究成果和混合坐标海洋模型(HYCOM)再分析数据产品的计算结果也较为相符,仅在中尺度涡数量、生命周期长度、半径和海表涡动能的模拟上与观测稍有偏差,这也是目前数值模式在模拟中尺度涡方面的瓶颈。研究结果表明OCEAN_SCS数据集能够为进一步研究南海温跃层、温度锋和中尺度涡的生消变化规律等提供数据支撑,可用于更全面地研究南海的海洋环境特征,服务于南海海洋环境保障工作。
A 40-year temperature-salinity-current numerical dataset of the South China Sea (SCS), namely OCEAN_SCS, has been generated based on the Regional Ocean Model System (ROMS). Data from independent observations and previous literatures are used to assess the thermocline, thermal front and mesoscale eddy in the OCEAN_SCS. The results show that the OCEAN_SCS has a good performance on simulating the thermocline, thermal front and mesoscale eddy in the SCS, and the simulation is generally consistent with previous studies and the HYCOM (Hybrid Coordinate Ocean Model) reanalysis data. Minor biases between the simulation and observation only exist in the number, life cycle, radius and sea surface eddy kinetic energy of mesoscale eddy, which is known as the common bottleneck of mesoscale eddy numerical modeling. The results also suggest that the OCEAN_SCS dataset is reliable to support further researches on the generation, dissipation and variation of the thermocline, thermal front and mesoscale eddy in the SCS, and to support comprehensive researches on the oceanic environmental protection in the SCS.
参考文献:
[1] 陈希, 沙文钰, 李妍. 南海北部海区温跃层分布特征及成因的初步分析[J]. 海洋预报, 2001, 18(4): 9-17. CHEN X, SHA W Y, LI Y. The elementary analysis for the distribution character of thermocline in the area of South China Sea [J]. Marine Forecasts, 2001, 18(4): 9-17.
[2] 杜岩. 南海混合层和温跃层的季节动力过程[D]. 青岛: 青岛海洋大学, 2002. Du Y. Seasonal dynamic processes of the mixed layer and thermcline in the South China Sea[D]. Qingdao: Ocean University of China, 2002.
[3] 周燕遐, 范振华, 颜文彬, 等. 南海海域BT资料、南森站资料计算温跃层——三项示性特征的比较[J]. 海洋通报, 2004, 23(1): 22- 26. ZHOU Y X, FAN Z H, YAN W B, et al. Thermocline comparison of SCS using BT and Nansen data[J]. Marine Science Bulletin, 2004, 23(1): 22-26.
[4] 兰健, 鲍颖, 于非, 等. 南海深水海盆环流和温跃层深度的季节变化[J]. 海洋科学进展, 2006, 24(4): 436-445. LAN J, BAO Y, YU F, et al. Seasonal variabilities of the circulation and thermocline depth in the South China Sea deep water basin[J]. Advances in Marine Science, 2006, 24(4): 436-445.
[5] FAN W, SONG J B, LI S. A numerical study on seasonal variations of the thermocline in the South China Sea based on the ROMS[J]. Acta Oceanologica Sinica, 2014, 33(7): 56-64.
[6] FANG G H, CHEN H Y, WEI Z X, et al. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11S16.
[7] JING Z Y, QI Y Q, FOX-KEMPER B, et al. Seasonal thermal fronts on the northern South China Sea shelf: satellite measurements and three repeated field surveys[J]. Journal of Geophysical Research: Oceans, 2016, 121(3): 1914-1930.
[8] BARTH J A, MENGE B A, LUBCHENCO J, et al. Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 3719- 3724.
[9] WANG Z Y, ZHAI F G, LI P L. A shift in the upperocean temperature trends in the South China Sea since the late 1990s[J]. Acta Oceanologica Sinica, 2016, 35(11): 44-51.
[10] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4): 1-16. SU J L. A review of circulation dynamics of the coastal oceans near China[J]. Acta Oceanologica Sinica, 2001, 23(4): 1-16.
[11] 管秉贤, 袁耀初. 中国近海及其附近海域若干涡旋研究综述I. 南海和台湾以东海域[J]. 海洋学报, 2006, 28(3): 1-16. GUAN B X, YUAN Y C. Overview of studies on some eddies in the China seas and their adjacent seas I. The South China Sea and the region east of Taiwan[J]. Acta Oceanologica Sinica, 2006, 28(3): 1-16.
[12] 王桂华, 苏纪兰, 齐义泉. 南海中尺度涡研究进展[J]. 地球科学进展, 2005, 20(8): 882-886. WANG G H, SU J L, QI Y Q. Advances in studying mesoscale eddies in South China Sea[J]. Advances in Earth Science, 2005, 20(8): 882-886.
[13] CARTON J A, CHEPURIN G, CAO X H, et al. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part I: methodology[J]. Journal of Physical Oceanography, 2000, 30(2): 294-309.
[14] CARTON J A, CHEPURIN G, CAO X H. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part II: results[J]. Journal of Physical Oceanography, 2000, 30(2): 311- 326.
[15] CUMMINGS J A, SMEDSTAD O M. Variational data assimilation for the global ocean[M]//PARK S K, XU L. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Berlin: Springer, 2013: 303-343.
[16] HAN G J, LI W, ZHANG X F, et al. A regional ocean reanalysis system for coastal waters of China and adjacent seas[J]. Advances in Atmospheric Sciences, 2011, 28(3): 682-690.
[17] HAN G J, FU H L, ZHANG X F, et al. A global ocean reanalysis product in the China ocean reanalysis (CORA) project[J]. Advances in Atmospheric Sciences, 2013, 30(6): 1621-1631.
[18] ZENG X Z, PENG S Q, LI Z J, et al. A reanalysis dataset of the South China Sea[J]. Scientific Data, 2014, 1: 140052.
[19] 谢波涛, 尹汉军, 朱宇航, 等. 南海温盐流数值产品构建及评估[J]. 热带气象学报, 2022, 38(4): 529-540. XIE B T, YIN H J, ZHU Y H, et al. The generation and assessment of temperature-salinity-current numerical dataset in the South China Sea[J]. Journal of Tropical Meteorology, 2022, 38(4): 529-540.
[20] SHCHEPETKIN A F, MCWILLIAMS J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3090.
[21] SHCHEPETKIN A F, MCWILLIAMS J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4): 347-404.
[22] DEBREU L, MARCHESIELLO P, PENVEN P, et al. Two way nesting in split-explicit ocean models: algorithms, implementation and validation[J]. Ocean Modelling, 2012, 49-50: 1-21.
[23] PENVEN P, DEBREU L, MARCHESIELLO P, et al. Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system[J]. Ocean Modelling, 2006, 12(1-2): 157-187.
[24] OLSON C J, BECKER J J, SANDWELL D T. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS[C]//AGU Fall Meeting Abstracts 2014. San Francisco: AGU, 2014.
[25] LARGE W G, MCWILLIAMS J C, DONEY S C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363-403.
[26] CARTON J A, CHEPURIN G A, CHEN L G. SODA3: a new ocean climate reanalysis[J]. Journal of Climate, 2018, 31(17): 6967-6983.
[27] CARTON J A, CHEPURIN G A, CHEN L G, et al. Improved global net surface heat flux[J]. Journal of Geophysical Research: Oceans, 2018, 123(5): 3144-3163.
[28] CARTON J A, PENNY S G, KALNAY E. Temperature and salinity variability in the SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993-2015[J]. Journal of Climate, 2019, 32(8): 2277- 2293.
[29] ERSBACH H, BELL B, BERRISFORD P, et al. ERA5 hourly data on pressure levels from 1940 to present[EB/OL]. (2018-06- 14) [2022-08-30].https://dx.doi.org/10.24381/cds.bd0915c6.
[30] HOLLAND G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212-1218.
[31] LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds[J]. Journal of Physical Oceanography, 1981, 11(3): 324-336.
[32] PENG S Q, LI Y N. A parabolic model of drag coefficient for storm surge simulation in the South China Sea[J]. Scientific Reports, 2015, 5: 15496.
[33] EGBERT G D, EROFEEVA S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183-204.
[34] 姜波, 吴新荣, 丁杰, 等. 南海温跃层深度计算方法的比较[J]. 海洋通报, 2016, 35(1): 64-73. JIANG B, WU X R, DING J, et al. Comparison on the methods of determining the depths of thermocline in the South China Sea[J]. Marine Science Bulletin, 2016, 35(1): 64-73.
[35] 郝佳佳, 陈永利, 王凡. 中国近海温跃层判定方法的研究[J]. 海洋科学, 2008, 32(12): 17-24. HAO J J, CHEN Y L, WANG F. A study of thermocline calculations in the China sea[J]. Marine Sciences, 2008, 32(12): 17-24.
[36] MOORE J K, ABBOTT M R, RICHMAN J G. Location and dynamics of the Antarctic polar front from satellite sea surface temperature data[J]. Journal of Geophysical Research: Oceans, 1999, 104(C2): 3059-3073.
[37] WANG D X, LIU Y, QI Y Q, et al. Seasonal variability of thermal fronts in the northern South China Sea from satellite data[J]. Geophysical Research Letters, 2001, 28(20): 3963-3966.
[38] PARK K A, CHUNG J Y, KIM K. Sea surface temperature fronts in the East (Japan) Sea and temporal variations[J]. Geophysical Research Letters, 2004, 31(7): L07304.
[39] CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
[40] ISERN-FONTANET J, GARCÍA-LADONA E, FONT J. Identification of marine eddies from Altimetric maps[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 772-778.
[41] ISERN-FONTANET J, GARCÍA-LADONA E, FONT J. Vortices of the Mediterranean Sea: an altimetric perspective[J]. Journal of Physical Oceanography, 2006, 36(1): 87-103.
[42] CHAIGNEAU A, LE TEXIER M, ELDIN G, et al. Vertical structure of mesoscale eddies in the eastern south Pacific Ocean: a composite analysis from altimetry and Argo profiling floats[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11025.
[43] 林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡的时空变化规律Ⅰ. 统计特征分析[J]. 海洋学报, 2007, 29(3): 14-22. LIN P F, WANG F, CHEN Y L, et al. Temporal and spatial variation characteristics on eddies in the South China Sea I. Statistical analyses[J]. Acta Oceanologica Sinica, 2007, 29(3): 14- 22.
[44] CHEN G X, HOU Y J, CHU X Q. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06018.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn