首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
能见度激光雷达在天津港海事交通服务中的应用研究
作者:王雪娇1 2  蔡子颖3  孙玫玲1 2  郭玲1 2  任丽媛1 2  张希帆1 2 
单位:1. 天津市海洋气象重点实验室, 天津 300074;
2. 天津市气象服务中心, 天津 300074;
3. 天津市环境气象中心, 天津 300074
关键词:激光雷达 低能见度 海事交通 概率密度匹配法 时空特征 
分类号:P732.1;TN958.98
出版年·卷·期(页码):2023·40·第二期(110-119)
摘要:
利用能见度激光雷达在天津港开展低能见度监测预警技术研究实验,发挥高精度雷达空间监测的优势,分析天津港港口航道能见度的时空分布特征,对比海陆低能见度的差异,探索激光雷达在海事交通气象服务中的作用。结果表明:天津港低能见度时空分布呈现明显的季节变化和日变化,冬季低能见度的出现频率高于其他季节,低能见度的高发时段集中在05—09时。受海陆不同下垫面的影响,近海低能见度的出现频率高于沿岸,高发时段晚于沿岸3~4 h。个例显示海事部门限制通航时间与雷达观测有较好的一致性,雷达能较为准确地捕捉到多次低能见度时段。
We carried out a research experiment on monitoring and early warning technology for low visibility using visibility lidar in Tianjin Port. To better exploit the advantages of high precision radar space monitoring, the temporal and spatial characteristics in visibility was analyzed, comparisons of the difference in low visibility between land and sea were carried out, and the role of lidar in the meteorological service of maritime traffic were explored. The results indicated that the temporal and spatial distribution of low visibility in Tianjin Port showed obvious seasonal and diurnal variation characteristics: low visibility occurred more frequently in winter than in other seasons, and the peak period of low visibility was concentrated between 05am and 09am. Affected by different underlying surfaces on sea and land, low visibility occurred more frequently in offshore areas than in coastal areas, and the peak period of low visibility (≤3 km) in the offshore area was 3~4 hours later than that in the coastal area. In addition, case studies showed that the limited navigation time of maritime traffic was in accord with the lidar observations, and lidar could relatively accurately capture multiple periods of low visibility.
参考文献:
[1] 刘光普, 黄思源, 梁莺, 等. 毫米波雷达在港口海雾观测和能见度反演中的应用[J]. 干旱气象, 2019, 37(6): 993-1004. LIU G P, HUANG S Y, LIANG Y, et al. Application of millimeter wave radar in harbor marine fog observation and visibility inversion[J]. Journal of Arid Meteorology, 2019, 37(6): 993-1004.
[2] 胡利军, 杨豪, 高爱臻, 等. 宁波北仑港区一次航道海雾地基多源信息观测特征分析[J]. 气象科技, 2021, 49(2): 192-199. HU L J, YANG H, GAO A Z, et al. Characteristic analysis of ground-based multi-source information observation of a sea fog process in waterway of Beilun Port, Ningbo[J]. Meteorological Science and Technology, 2021, 49(2): 192-199.
[3] TESHIBA M, HASHIGUCHI H, UEMATSU A, et al. Fog observations with a millimeter-wave scanning radar at Miyoshi Basin, Japan[J]. Earth, Planets and Space, 2004, 56(2): 259-268.
[4] CHEN J, LI Z Q, LV M, et al. Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China[J]. Atmospheric Chemistry and Physics, 2019, 19(2): 1327-1342.
[5] KOO Y S, YUN H Y, CHOI D R, et al. An analysis of chemical and meteorological characteristics of haze events in the Seoul metropolitan area during January 12-18, 2013[J]. Atmospheric Environment, 2018, 178: 87-100.
[6] LIU J J, CHEN B, HUANG J P. Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements[J]. Journal of Meteorological Research, 2014, 28(2): 185-198.
[7] 黄悦, 陈斌, 董莉, 等. 利用星载和地基激光雷达分析2019年5月东亚沙尘天气过程[J]. 大气科学, 2021, 45(3): 524-538. HUANG Y, CHEN B, DONG L, et al. Analysis of a dust weather process over East Asia in May 2019 based on satellite and groundbased Lidar[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(3): 524-538.
[8] NISHIZAWA T, SUGIMOTO N, MATSUI I, et al. Ground-based network observation using Mie – Raman lidars and multiwavelength Raman lidars and algorithm to retrieve distributions of aerosol components[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 79-93.
[9] SHIMIZU A, SUGIMOTO N, MATSUI I, et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D19): D19S17.
[10] PAHLOW M, KLEISSL J, PARLANGE M B, et al. Atmospheric boundary-layer structure observed during a haze event due to forest-fire smoke[J]. Boundary-Layer Meteorology, 2005, 114(1): 53-70.
[11] 宋烺, 邓涛, 吴兑, 等. 广州地区典型灰霾过程及不同天气类型下边界层高度研究[J]. 环境科学学报, 2019, 39(5): 1381-1391. SONG L, DENG T, WU D, et al. Study on planetary boundary layer height in a typical haze Period and different weather types over Guangzhou[J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1381-1391.
[12] 徐栋夫, 曹萍萍, 王源程. 成都一次重污染过程的气溶胶光学特性垂直分布[J]. 气象, 2020, 46(7): 948-958. XU D F, CAO P P, WANG Y C. Study of the vertical distribution of aerosol optical properties during a heavy pollution event in Chengdu[J]. Meteorological Monthly, 2020, 46(7): 948-958.
[13] 康晓华, 卜晓鸿, 徐文静, 等. 能见度激光雷达研制及其在民航机场的观测研究[J]. 量子电子学报, 2017, 34(6): 727-734. KANG X H, BU X H, XU W J, et al. Development of visibility lidar and its observation in civil aviation airport[J]. Chinese Journal of Quantum Electronics, 2017, 34(6): 727-734.
[14] 冼锦洪. 应用于海雾监测的激光雷达的研制和能见度反演算法的研究[D]. 合肥: 中国科学技术大学, 2020. XIAN J H. Development of Lidar for sea fog monitoring and inversion algorithm for visibility[D]. Hefei: University of Science and Technology of China, 2020.
[15] XIAN J H, HAN Y L, HUANG S Y, et al. Novel Lidar algorithm for horizontal visibility measurement and sea fog monitoring[J]. Optics Express, 2018, 26(26): 34853-34863.
[16] XIAN J H, SUN D S, AMORUSO S, et al. Parameter optimization of a visibility LiDAR for sea-fog early warnings[J]. Optics Express, 2020, 28(16): 23829-23845.
[17] 陈燕, 蔡亲波, 徐文静, 等. 能见度激光雷达在一次琼州海峡大雾中的应用[J]. 气象科技进展, 2020, 10(4): 128-132. CHEN Y, CAI Q B, XU W J, et al. Application of visibility laser radar in a heavy fog of Qiongzhou Strait[J]. Advances in Meteorological Science and Technology, 2020, 10(4): 128-132.
[18] KLETT J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220.
[19] 潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5): 755-766. PAN Y, GU J X, YU J J, et al. Test of merging methods for multisource observed precipitation products at high resolution over China[J]. Acta Meteorologica Sinica, 2018, 76(5): 755-766.
[20] SHEN Y, ZHAO P, PAN Y, et al. A high spatiotemporal gaugesatellite merged precipitation analysis over China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(6): 3063-3075.
[21] XIE P P, XIONG A Y. A conceptual model for constructing highresolution gauge-satellite merged precipitation analyses[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D21): D21106.
[22] 宇婧婧, 沈艳, 潘旸, 等. 概率密度匹配法对中国区域卫星降水资料的改进[J]. 应用气象学报, 2013, 24(5): 544-553. YU J J, SHEN Y, PAN Y, et al. Improvement of satellite-based precipitation estimates over China based on probability density function matching method[J]. Journal of Applied Meteorological Science, 2013, 24(5): 544-553.
[23] 吴晓京, 李三妹, 廖蜜, 等. 基于20年卫星遥感资料的黄海、渤海海雾分布季节特征分析[J]. 海洋学报, 2015, 37(1): 63-72. WU X J, LI S M, LIAO M, et al. Analyses of seasonal feature of sea fog over the Yellow Sea and Bohai Sea based on the recent 20 years of satellite remote sensing data[J]. Haiyang Xuebao, 2015, 37(1): 63-72.
[24] 蔡子颖, 刘爱霞, 韩素芹, 等. 天津低能见度特征初探[J]. 气象, 2014, 40(1): 114-118. CAI Z Y, LIU A X, HAN S Q, et al. Research of characteristics on low visibility in Tianjin[J]. Meteorological Monthly, 2014, 40(1): 114-118.
[25] 曲平, 解以扬, 刘丽丽, 等. 1988—2010年渤海湾海雾特征分析[J]. 高原气象, 2014, 33(1): 285-293. QU P, XIE Y Y, LIU L L, et al. Character analysis of sea fog in Bohai Bay from 1988 to 2010[J]. Plateau Meteorology, 2014, 33(1): 285-293.
[26] 李子华. 中国近40年来雾的研究[J]. 气象学报, 2001, 59(5): 616-624. LI Z H. Studies of fog in China over the past 40 years[J]. Acta Meteorologica Sinica, 2001, 59(5): 616-624.
[27] 刘小宁, 张洪政, 李庆祥, 等. 我国大雾的气候特征及变化初步解释[J]. 应用气象学报, 2005, 16(2): 220-230. LIU X N, ZHANG H Z, LI Q X, et al. Preliminary research on the climatic characteristics and change of fog in China[J]. Journal of Applied Meteorological Science, 2005, 16(2): 220-230.
[28] 陆春松, 牛生杰, 杨军, 等. 南京冬季一次雾过程宏微观结构的突变特征及成因分析[J]. 大气科学, 2010, 34(4): 681-690. LU C S, NIU S J, YANG J, et al. Jump features and causes of macro and microphysical structures of a winter fog in Nanjing[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(4): 681-690.
[29] 郑怡, 李冉, 史得道, 等. 渤海中西部近海与沿岸海雾的特征分析[J]. 海洋预报, 2016, 33(6): 74-80. ZHENG Y, LI R, SHI D D, et al. Characteristics of offshore and coastal sea fog in the mid-west Bohai Sea[J]. Marine Forecasts, 2016, 33(6): 74-80.
[30] 汤鹏宇, 何宏让, 阳向荣. 大连海雾特征及形成机理初步分析[J]. 干旱气象, 2013, 31(1): 62-69. TANG P Y, HE H R, YANG X R. Characteristics and generating mechanism of sea fog in Dalian of Liaoning Province[J]. Journal of Arid Meteorology, 2013, 31(1): 62-69.
[31] 周福, 钱燕珍, 金靓, 等. 宁波海雾特征和预报着眼点[J]. 气象, 2015, 41(4): 438-446. ZHOU F, QIAN Y Z, JIN J, et al. Characteristics and forecasting focus of sea fog in Ningbo[J]. Meteorological Monthly, 2015, 41(4): 438-446.
[32] 郭俊建, 韩永清, 赵勇. 山东区域性辐射雾时空分布及地面气象要素特征分析[J]. 海洋气象学报, 2020, 40(2): 96-102. GUO J J, HAN Y Q, ZHAO Y. Analysis of spatio-temporal distribution of regional radiation fog and characteristics of key meteorological elements in Shandong[J]. Journal of Marine Meteorology, 2020, 40(2): 96-102.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn