首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
南海东北部陆架区台风“卡努”的近惯性振荡响应
作者:刘同木1 2 3  余建星1  孟强2 3  王研2 3  张新文2 3 
单位:1. 天津大学水利工程仿真与安全国家重点实验室, 天津 300072;

2. 国家海洋局南海调查技术中心, 广东 广州 510310;

3. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510310
关键词:南海东北部 近惯性振荡 近惯性内波 台风“卡努” 
分类号:P444
出版年·卷·期(页码):2022·39·第六期(83-89)
摘要:
基于2017年10月南海东北部陆架区的潜标观测资料,分析了南海东北部陆架区海洋对台风“卡努”的近惯性响应特征,研究了近惯性内波生成、传播和消亡等演变规律。研究结果表明:在动力学响应方面,台风过境期间全水深流速显著增强,表层最大流速达到145cm/s;近惯性流速在垂向上存在的两个高值区分别位于表层和中层,中层近惯性振荡影响时间最长超过12d;近惯性振荡e折时间尺度大约为7.6d。近惯性内波的垂向群速度为0.042cm/s;近惯性内波会引起波-波相互作用、近惯性波与全日内波的耦合波;在台风“卡努”作用期间存在显著的频率“蓝移”现象。在热力学响应方面,台风会引起表层水温下降,底层水温上升。
Based on the submersible observations in the northeastern continental shelf of the South China Sea in October 2017, the characteristics of the near-inertial response of the oceans in the northeastern continental shelf to typhoon "Kanu" are analyzed, and the evolution pattern of the near-inertial internal wave generation, propagation and extinction is studied. The results show that, in terms of dynamic response, the current velocity throughout the water column increases significantly during the typhoon transit, and the maximum surface velocity reaches 145 cm/s. The two high value areas of the near-inertial velocity vertically are located in the surface layer and the middle layer, and the influence time of near-inertial oscillation in the middle layer is longer than 12 d. The e-folding time scale of the near-inertial oscillations is about 7.6 d. The vertical group velocity of the near-inertial internal wave is 0.042 cm/s. The near-inertial internal wave could cause wave-wave interaction and coupled wave between of the near-inertial wave and the all-day internal wave. During typhoon period, there is a significant frequency "blue-shift" phenomenon during typhoon "Kanu". In terms of thermodynamic response, the typhoon causes the surface water temperature decrease and bottom water temperature increase.
参考文献:
[1] 钱奇峰. 西北太平洋热带气旋对海洋的影响[D]. 南京:南京大学, 2010. QIAN Q F. Ocean response to tropical cyclones in Northwest Pacific[D]. Nanjing:Nanjing University, 2010.
[2] 王东晓, 王强, 蔡树群, 等. 南海中深层动力格局与演变机制研究进展[J]. 中国科学:地球科学, 2019, 49(12):1919-1932. WANG D X, WANG Q, CAI S Q, et al. Advances in research of the mid-deep South China Sea circulation[J]. Scientia Sinica Terrae, 2019, 49(12):1919-1932.
[3] 万云娇. 热带气旋在南海西沙上层海洋激发的近惯性振荡特征研究[D]. 北京:中国科学院大学, 2015. WAN Y J. Study on the characteristics of near inertial oscillation excited by tropical cyclones in the upper ocean of Xisha, South China Sea[D]. Beijing:University of Chinese Academy of Sciences, 2015.
[4] 江森汇, 吴泽文, 舒勰俊. 南海西边界急流影响下的近惯性振荡特征分析[J]. 地球科学进展, 2018, 33(3):270-280. JIANG S H, WU Z W, SHU X J. Characteristics of near-inertial oscillation influenced by western boundary current of South China Sea[J]. Advances in Earth Science, 2018, 33(3):270-280.
[5] 朱大勇, 李立. 台风Wayne过后南海北部陆架海域的近惯性振荡[J]. 热带海洋学报, 2007, 26(4):1-7. ZHU D Y, LI L. Near inertial oscillations in shelf-break of northern South China Sea after passage of typhoon Wayne[J]. Journal of Tropical Oceanography, 2007, 26(4):1-7.
[6] 高大鲁, 王新怡, 李秉天, 等. 南海北部海域对台风尼格的响应特征分析[J]. 中国海洋大学学报(自然科学版), 2016, 46(6):8-13, 28. GAO D L, WANG X Y, LI B T, et al. On the response of the upper ocean of Northern South China sea to typhoon Nalgae[J]. Periodical of Ocean University of China, 2016, 46(6):8-13, 28.
[7] CHEN S L, CHEN D Y, XING J X. A study on some basic features of inertial oscillations and near-inertial internal waves[J]. Ocean Science, 2017, 13(5):829-836.
[8] KAWAGUCHI Y, WAGAWA T, IGETA Y. Near-inertial internal waves and multiple-inertial oscillations trapped by negative vorticity anomaly in the central Sea of Japan[J]. Progress in Oceanography, 2020, 181:102240.
[9] LEAMAN K D. Observations on the vertical polarization and energy flux of near-inertial waves[J]. Journal of Physical Oceanography, 1976, 6(6):894-908.
[10] JAROSZ E, HALLOCK Z R, TEAGUE W J. Near-inertial currents in the DeSoto Canyon region[J]. Continental Shelf Research, 2007, 27(19):2407-2426.
[11] SILVERTHORNE K E, TOOLE J M. Seasonal kinetic energy variability of near-inertial motions[J]. Journal of Physical Oceanography, 2009, 39(4):1035-1049.
[12] MUKHERJEE A, SHANKAR D, G APARNA S, et al. Nearinertial currents off the east coast of India[J]. Continental Shelf Research, 2013, 55:29-39.
[13] KIM S Y, KURAPOV A L, KOSRO P M. Influence of varying upper ocean stratification on coastal near-inertial currents[J]. Journal of Geophysical Research:Oceans, 2015, 120(12):8504-8527.
[14] GOUGH M K, RENIERS A J H M, MACMAHAN J H, et al. Resonant near-surface inertial oscillations in the northeastern Gulf of Mexico[J]. Journal of Geophysical Research:Oceans, 2016, 121(4):2163-2182.
[15] 蒋晨. 南海北部上层海洋对热带气旋的响应研究[D]. 湛江:广东海洋大学, 2020. JIANG C. Upper ocean response of the northern south China sea to tropical cyclone[D]. Zhanjiang:Guangdong Ocean University, 2020.
[16] 毛华斌, 陈桂英, 尚晓东, 等. 西沙海域内潮与近惯性内波的相互作用[J]. 地球物理学报, 2013, 56(2):592-600. MAO H B, CHEN G Y, SHANG X D, et al. Interaction between internal tides and near-inertial waves at Xisha area[J]. Chinese Journal of Geophysics, 2013, 56(2):592-600.
[17] 张骞, 廖光洪, 蔺飞龙, 等. 南海西北部上层海洋对台风"杜苏芮" 的响应分析[J]. 海洋学报, 2019, 41(7):22-35. ZHANG Q, LIAO G H, LIN F L, et al. Analysis of upper ocean response to Typhoon Doksuri in the northwest South China Sea[J]. Haiyang Xuebao, 2019, 41(7):22-35.
[18] 江森汇, 吴泽文, 舒勰俊. 基于观测的南海西沙海域深层近惯性振荡特征分析[J]. 海洋通报, 2019, 38(5):543-552. JIANG S H, WU Z W, SHU X J. Evolvement analyses of nearinertial motion in deep oceans by submarine observations of Xisha Island in the South China Sea[J]. Marine Science Bulletin, 2019, 38(5):543-552.
[19] SUN Z Y, HU J Y, ZHENG Q A, et al. Comparison of typhooninduced near-inertial oscillations in shear flow in the northern South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(11):38-45.
[20] 李娟, 刘军亮, 蔡树群. 台风"康森" 产生的海洋近惯性能量的数值模拟研究[J]. 热带海洋学报, 2020, 39(2):35-43. LI J, LIU J L, CAI S Q. Numerical simulation of oceanic nearinertial energy induced by Typhoon Conson[J]. Journal of Tropical Oceanography, 2020, 39(2):35-43.
[21] 于璐莎, 翟荣伟, 鲁远征, 等. 南海北部台风和中尺度暖涡对近惯性振荡的影响[J]. 海洋学报, 2020, 42(1):1-11. YU L S, ZHAI R W, LU Y Z, et al. Effects of typhoon and the mesoscale warm eddy on the near-inertial oscillations in the northern of the South China Sea[J]. Haiyang Xuebao, 2020, 42(1):1-11.
[22] 于璐莎. 罗弗敦海盆和南海北部典型涡旋特性研究[D]. 广州:中国科学院南海海洋研究所, 2019. YU L S. Study on the characteristics of typical vortices in the Lovetown basin and the northern South China Sea[D]. Guangzhou:South China Sea Institute of Oceanology, Chinese Academy of Sciences, 2019.
[23] 马永贵, 张书文, 齐义泉, 等. 南海西北部上层海洋对连续台风的近惯性响应[J]. 中国科学:地球科学, 2019, 49(4):731-740. MA Y G, ZHANG S W, QI Y Q, et al. Upper ocean near-inertial response to the passage of two sequential typhoons in the northwestern South China Sea[J]. Scientia Sinica Terrae, 2019, 49(4):731-740.
[24] 冀承振, 葛勇, 李健, 等. 黄海海洋对台风"灿鸿" 外围过程响应的观测研究[J]. 海洋学报, 2020, 42(1):46-53. JI C Z, GE Y, LI J, et al. Study of the Yellow Sea responses to peripheral processes of Typhoon Chan-hom[J]. Haiyang Xuebao, 2020, 42(1):46-53.
[25] 张茜, 张小将, 孙惠, 等. 南海混合的能量源研究[J]. 中国海洋大学学报, 2018, 48(4):9-15. ZHANG Q, ZHANG X J, SUN H, et al. Energy source of mixing in the south China Sea[J]. Periodical of Ocean University of China, 2018, 48(4):9-15.
[26] 张翰. 上层海洋对热带气旋的动力学响应机制[D]. 厦门:厦门大学, 2017. ZHANG H. Dynamical mechanisms of upper oceanic response to tropical cyclones[D]. Xiamen:Xiamen University, 2017.
[27] 管守德. 南海北部近惯性振荡研究[D]. 青岛:中国海洋大学, 2014. GUAN S D. Near inertial oscillations in the Northern Southern South Chinas Sea[D]. Qingdao:Ocean University of China, 2014.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn