首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
2002号热带气旋“鹦鹉”结构非对称特点及近海停止增强原因分析
作者:覃丽1  吴启树2  曾小团1  吴俞3 
单位:1. 广西壮族自治区气象台, 广西 南宁 530022;
2. 福建省气象台, 福建 福州 350001;
3. 海南省气象台, 海南 海口 570203
关键词:结构非对称 热带气旋 “鹦鹉” 近海停止增强 
分类号:P444
出版年·卷·期(页码):2022·39·第四期(24-36)
摘要:
利用日本葵花-8卫星的黑体亮温、ERA5再分析资料和NOAA海表温度等资料,对2002号热带气旋“鹦鹉”的结构非对称特点及近海停止增强的原因进行了分析。结果表明:在南亚高压相对较强、副热带高压相对较弱的环流背景下,热带气旋“鹦鹉”由缓慢加强转为停止增强,其黑体亮温的非对称程度增大。在较大的环境风垂直切变作用下,对流集中分布在环境风垂直切变的下风方;当环境风垂直切变增大到大于阻碍热带气旋发展的阈值(12.5 m/s)时,热带气旋“鹦鹉”随即停止增强。高于28℃的海表温度是热带气旋“鹦鹉”停止增强后维持强度不变的重要前提条件。低层水汽输入减弱而输出增强、高层辐散减弱至小于低层辐合、热带气旋环流中心向南倾斜加剧、低层流入热带气旋南侧的西风分量减弱以及高层热带气旋周围流入热带气旋的北风的分量明显增大不利于热带气旋“鹦鹉”增强,是其在近海停止增强的重要原因。
Using the black body brightness temperature (TBB) data of Japan HMW8 satellite, the reanalysis data of European Center ERA5 and the sea surface temperature (SST) data of NOAA, the asymmetric feature and cause of stopping intensification of tropical cyclone (TC) "Nuri" (2002) over the offshore area of China is analyzed. The results show that TC "Nuri" changes from slow strengthening to stopped strengthening and the asymmetry of its TBB increases under the background of relatively strong South Asian high and relatively weak subtropical high. Under the influence of strong vertical shear of environmental wind, convection is concentrated on its downwind side. TC "Nuri" stops enhancement when the vertical shear of environmental wind increases to be greater than the threshold (12.5 m/s) that hinders the development of TC. The SST above 28 ℃ is an important precondition for TC "Nuri" maintaining its strength after it stops strengthening. The main causes for TC "Nuri" stopping intensification over the offshore of China are the weakening input and enhancing output of the low-level vapor, decreasing of upper-level divergence to be smaller than low-level convergence, the intensified southward inclination of the TC circulation center, and the unfavorable condition for TC intensification due to the weakening of low-level westerly wind component flowing into the south of the TC and the significant increasing of upperlevel northerly wind component flowing into the TC.
参考文献:
[1] 端义宏,余晖,伍荣生.热带气旋强度变化研究进展[J].气象学报, 2005, 63(5):636-645. DUAN Y H, YU H, WU R S. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5):636-645.
[2] 雷小途.非绝热加热对热带气旋非对称结构影响的数值试验[J].热带气象学报, 1998, 14(3):208-217. LEI X T. The numerical experiment of the influence of diabatic heating on tropical cyclone asymmetric structure[J]. Journal of Tropical Meteorology, 1998, 14(3):208-217.
[3] FRANK W M, RITCHIE E A. Effects of environmental flow upon tropical cyclone structure[J]. Monthly Weather Review, 1999, 127(9):2044-2061.
[4] FRANK W M, RITCHIE E A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes[J]. Monthly Weather Review, 2001, 129(9):2249-2269.
[5] 彭犁然,舒守娟.利用GPS Dropsonde资料研究"龙王"台风的结构特征[J].热带气象学报, 2010, 26(1):13-21. PENG L R, SHU S J. Analysis on structure of typhoon Longwang based on GPS dropsonde data[J]. Journal of Tropical Meteorology, 2010, 26(1):13-21.
[6] 舒守娟,王元,宋金杰.西北太平洋台风"海棠"结构的GPS下投式探空仪观测分析[J].气象学报, 2011, 69(6):933-944. SHU S J, WANG Y, SONG J J. Observational analysis of the structure of Typhoon Haitang (0505) over the western North Pacific by using the GPS Dropsonde data[J]. Acta Meteorologica Sinica, 2011, 69(6):933-944.
[7] 袁金南,王国民.关于台风非对称结构与台风路径的数值分析[J].热带气象学报, 1997, 13(3):208-216. YUAN J N, WANG G M. A numerical analysis about asymmetric structure and typhoon motion[J]. Journal of Tropical Meteorology, 1997, 13(3):208-216.
[8] 余晖.斜压大气中环流非对称结构与台风移速关系的数值研究[J].气象学报, 1999, 57(6):694-704. YU H. A numerical study on the relationship between the asymmetric structure and moving velocity of typhoon in baroclinic atmosphere[J]. Acta Meteorologica Sinica, 1999, 57(6):694-704.
[9] 张胜军,陈联寿,徐祥德. Helen台风(9505)异常路径的诊断分析与数值模拟[J].大气科学, 2005, 29(6):937-946. ZHANG S J, CHEN L S, XU X D. The Diagnoses and numerical simulation on the unusual track of Helen (9505)[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(6):937-946.
[10] 姚祖庆,丁金才,唐新章. 9414号和9417号热带气旋强度突变和维持的研究[R]//台风、暴雨灾害性天气监测、预报技术研究,台风科学、业务试验和天气动力学理论的研究.北京:气象出版社, 1996:71-75. YAO Z Q, DING J C, TANG X Z. The abrupt intensity change and maintenance of typhoons 9414 and 9417[R]//Monitor and Forecast of Typhoon, Torrential Rain and Disasters, Typhoon Science, Operation Experiments, and Synoptic Dynamics. Beijing:China Meteorological Press, 1996:71-75.
[11] 河惠卿,王振会,金正润.不对称环流对台风强度变化的影响[J].热带气象学报, 2008, 24(3):249-253. HE H Q, WANG Z H, JIN Z R. The effect of environment flow on the change of asymmetric typhoon intensity[J]. Journal of Tropical Meteorology, 2008, 24(3):249-253.
[12] 陈联寿,徐祥德,罗哲贤,等.热带气旋动力学引论[M].北京:气象出版社, 2002:3-4. CHEN L S, XU X D, LUO Z X, et al. An introduction to tropical cyclone dynamics[M]. Beijing:China Meteorological Press, 2002:3-4.
[13] MOLINARI J, DODGE P, VOLLARO D, et al. Mesoscale aspects of the downshear reformation of a tropical cyclone[J]. Journal of the Atmospheric Sciences, 2006, 63(1):341-354.
[14] REASOR P D, EASTIN M D, GAMACHE J F. Rapidly intensifying Hurri-cane Guillermo (1997). Part I:Low-wavenumber structure and evolution[J]. Monthly Weather Review, 2009, 137(2):603-631.
[15] SUSCA-LOPATA G, ZAWISLAK J, ZIPSER E J, et al. The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010)[J]. Monthly Weather Review, 2015, 143(6):2207-2223.
[16] 覃丽,吴启树,曾小团,等.对流非对称台风"天鸽"(1713)近海急剧增强成因分析[J].暴雨灾害, 2019, 38(3):212-220. QIN L, WU Q S, ZENG X T, et al. Analysis on cause of rapid intensification of asymmetrical Typhoon Hato (1713) over the offshore of China[J]. Torrential Rain and Disasters, 2019, 38(3):212-220.
[17] 郑秀丽,吴立广,周星阳,等.台风Rammasun (2014)与飓风Wilma (2005)快速增强过程的内核结构变化比较[J].热带气象学报, 2020, 36(2):219-231. ZHENG X L, WU L G, ZHOU X Y, et al. Comparison of innercore structure changes during rapid intensification between typhoon Rammasun (2014) and Hurricane Wilma (2005)[J]. Journal of Tropical Meteorology, 2020, 36(2):219-231.
[18] ZEHR R M. Environmental vertical wind shear with Hurricane Bertha (1996)[J]. Weather and Forecasting, 2003, 18(2):345-356.
[19] 杨璐,费建芳,黄小刚,等.西北太平洋环境风垂直切变和热带气旋移动对涡旋内对流非对称分布影响的特征分析[J].气象学报, 2017, 75(6):943-954. YANG L, FEI J F, HUANG X G, et al. Effects of vertical wind shear and tropical cyclone motion on asymmetric distribution of convective clouds in TCs over the western North Pacific[J]. Acta Meteorologica Sinica, 2017, 75(6):943-954.
[20] CHAN J C L, DUAN Y H, SHAY L K. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model[J]. Journal of the Atmospheric Sciences, 2001, 58(2):154-172.
[21] GRAY W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10):669-700.
[22] 黄荣成,雷小途.环境场对近海热带气旋突然增强与突然减弱影响的对比分析[J].热带气象学报, 2010, 26(2):129-137. HUANG R C, LEI X T. Comparative analysis of the influence of environment field on rapid intensifying and weakening of tropical cyclones over offshore waters of China[J]. Journal of Tropical Meteorology, 2010, 26(2):129-137.
[23] 赵大军,于玉斌,李莹."0814"号强台风发展维持的环境场分析[J].气象科学, 2011, 31(5):591-597. ZHAO D J, YU Y B, LI Y. A diagnostic analysis of the intensity change of strong typhoon Hagupit[J]. Journal of the Meteorological Sciences, 2011, 31(5):591-597.
[24] 尹浩,王咏青,钟玮.西北太平洋不同路径下热带气旋快速加强统计特征及影响因子分析[J].气象科学, 2016, 36(2):194-202. YIN H, WANG Y Q, ZHONG W. Characteristics and influence factors of the rapid intensification of tropical cyclone with different tracks in Northwest Pacific[J]. Journal of the Meteorological Sciences, 2016, 36(2):194-202.
[25] 刘赛赛,张立凤,张晓慧.台风"彩虹"(1522)近海急剧加强的特征分析[J].气象科学, 2017, 37(4):487-496. LIU S S, ZHANG L F, ZHANG X H. Characteristics analysis on rapid intensification of typhoon Mujigae (1522) over the offshore area of China[J]. Journal of the Meteorological Sciences, 2017, 37(4):487-496.
[26] 刘凯,宋晓姜,王彰贵,等. 1522号强台风"彩虹"近海急剧增强特征及机理分析[J].海洋预报, 2017, 34(4):32-41. LIU K, SONG X J, WANG Z G, et al. The features and mechanism analysis on rapid intensity change of NO. 1522 typhoon "Mujigae" over the offshore of China[J]. Marine Forecasts, 2017, 34(4):32-41.
[27] 任宏昌,符娇兰. 2020年6月大气环流和天气分析[J].气象, 2020, 46(9):1254-1260. REN H C, FU J L. Analysis of the June 2020 Atmospheric circulation and weather[J]. Meteorological Monthly, 2020, 46(9):1254-1260.
[28] 罗琪,张芳华. 2020年7月大气环流和天气分析[J].气象, 2020, 46(10):1385-1392. LUO Q, ZHANG F H. Analysis of the July 2020 Atmospheric circulation and weather[J]. Meteorological Monthly, 2020, 46(10):1385-1392.
[29] ZEHR R M. Tropical cyclogenesis in the Western North pacific[R]. Washington:NOAA Technical Report NESDIS 61, 1992:181.
[30] BLACK M L, GAMACHE J F, MARKS F D JR, et al. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994:The effect of vertical shear on structure and intensity[J]. Monthly Weather Review, 2002, 130(9):2291-2312.
[31] 胡春梅,端义宏,余晖,等.华南地区热带气旋登陆前强度突变的大尺度环境诊断分析[J].热带气象学报, 2005, 21(4):377-382. HU C M, DUAN Y H, YU H, et al. The diagnostic analysis of the rapid change in tropical cyclones intensity before landfall in South China[J]. Journal of Tropical Meteorology, 2005, 21(4):377-382.
[32] 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M]. 3版.北京:气象出版社, 2000:549. ZHU Q G, LIN J R, SHOU S W, et al. Synoptic principles and methods[M]. 3rd ed. Beijing:China Meteorological Press, 2000:549.
[33] DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. Journal of the Atmospheric Sciences, 1996, 53(14):2076-2088.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn