首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
全球热带气旋破坏力的气候特征
作者:骆方露1 2  朱敏1 2  李江南1 2 
单位:1. 中山大学大气科学学院/广东省气候变化与自然灾害研究重点实验室, 广东 珠海 519082;
2. 南方海洋科学与工程广东省实验室 (珠海), 广东 珠海 519082
关键词:能量耗散 风破坏力 风暴潮与波浪破坏力 海表温度 
分类号:P444
出版年·卷·期(页码):2021·38·第六期(33-47)
摘要:
利用国际热带气旋最佳路径资料集的历史热带气旋(TC)资料和Hadley中心海冰和海表温度资料集的海表温度(SST)数据,对能量耗散指数(PDI)、风破坏力评级指数(WDP)和风暴潮与波浪破坏力评级指数(SDP)进行统计,研究了1949—2019年近70 a来全球海域TC破坏力的时空变化特征。结果发现:全球各海区累积破坏力主要集中在夏秋季节,而北印度洋呈现双峰型分布,活跃在春末夏初和秋季;全球海域中,西太平洋TC累积破坏力最强,北印度洋最小。WDP和SDP平均评级比累积评级的活跃期长; TC频数少但破坏力大,或风破坏力小但风暴潮与波浪破坏力大的月份,容易造成预期之外的破坏。全球各海区PDI的年际变化表现出较为一致的线性增长,且具有明显的周期性变化; WDP和SDP年际变化缓慢,波动不大。除北印度洋,全球各海区PDI、WDP和SDP均与相应区域的平均SST存在较强的正相关关系,TC破坏力将随全球变暖的加剧而显著增大。
The historical tropical cyclone (TC) data from the International Best Track Archive for Climate Stewardship and the Sea Surface Temperature (SST) data from Hadley Center Sea Ice and Sea Surface Temperature dataset are employed to make statistics on the Power Dissipation Index (PDI), Wind Destructive Potential (WDP) and Storm Surge and Wave Destructive Potential (SDP) for studying the temporal and spatial variability of destructive potential of TCs in global seas from 1949 to 2019. The main conclusions are as follows:The accumulated PDI, WDP and SDP are mainly concentrated in summer and autumn, except for the North Indian Ocean (NI), which presents a bimodal distribution and is active in late spring and early summer and autumn. The accumulated destructive potential of TCs is the strongest in the Western Pacific and the smallest in NI. The average WDP and SDP have a longer active period than accumulated ratings. The months with low frequencies but high destructive potential of TCs or low wind destructive potential but high storm surge and wave destructive potential are prone to cause unexpected damage. The interannual variability of PDI in global seas show relatively consistent linear growth, and there are obvious periodic variation. However, WDP and SDP vary slowly with little fluctuation. Except for NI, PDI, WDP and SDP in global seas have strong positive correlations with the average SST of the corresponding regions, so the destructive potential of TCs will increase significantly with the intensification of global warming.
参考文献:
[1] Chan J C L, Shi J E. Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific[J]. Geophysical Research Letters, 1996, 23(20):2765-2767.
[2] Landsea C W, Nicholls N, Gray W M, et al. Downward trends in the frequency of intense at Atlantic hurricanes during the past five decades[J]. Geophysical Research Letters, 1996, 23(13):1697-1700.
[3] Camargo S J, Sobel A H. Western North Pacific tropical cyclone intensity and ENSO[J]. Journal of Climate, 2005, 18(15):2996-3006.
[4] 杨亚新, 夏剑东. 西北太平洋热带气旋活动特征[J]. 中国航海, 2019, 42(2):114-119.
[5] 张润宇, 凌铁军, 李响, 等. 2018年8月西北太平洋热带气旋频数异常的成因分析[J]. 海洋预报, 2020, 37(2):1-10.
[6] Pielke Jr R A, Landsea C N. La Niña, El Niño, and Atlantic hurricane damages in the United States[J]. Bulletin of the American Meteorological Society, 1999, 80(10):2027-2034.
[7] Kantha L. Time to replace the Saffir-Simpson hurricane scale?[J]. Eos, Transactions American Geophysical Union, 2006, 87(1):3-6.
[8] Bell G D, Halpert M S, Schnell R C, et al. Climate assessment for 1999[J]. Bulletin of the American Meteorological Society, 2000, 81(6):S1-S50.
[9] Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051):686-688.
[10] Powell M D, Reinhold T A. Tropical cyclone destructive potential by integrated kinetic energy[J]. Bulletin of the American Meteorological Society, 2007, 88(4):513-526.
[11] 王琳, 李倩瑜, 唐立娜. 热带气旋潜在影响力指数的改进及其应用——以14号热带气旋"莫兰蒂" 为例[J]. 自然灾害学报, 2018, 27(5):151-157.
[12] 王功录. 西北太平洋热带气旋累积能量(ACE)时空特征分析[D]. 青岛:中国海洋大学, 2013.
[13] 陈志伟. 西太热带气旋的气候特征及对海洋热状态响应机理的研究[D]. 上海:上海师范大学, 2019.
[14] 屠佳雨, 高抒, 周亮, 等. 海南岛东部台风重现期及其时空分布特征[J]. 第四纪研究, 2016, 36(1):184-195.
[15] 季倩倩. 近40年西北太平洋登陆热带气旋强度变化特征研究[D]. 湛江:广东海洋大学, 2020.
[16] 乔守文, 边志刚, 隋意, 等. 1980-2015年间北部湾海域热带气旋的变化及特征分析[J]. 广西科学, 2019, 26(6):663-668.
[17] Goldenberg S B, Landsea C W, Mestas-Nuñez A M, et al. The recent increase in Atlantic hurricane activity:causes and implications[J]. Science, 2001, 293(5529):474-479.
[18] Emanuel K A. The dependence of hurricane intensity on climate[J]. Nature, 1987, 326(6112):483-485.
[19] Knutson T R, Tuleya R E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation:sensitivity to the choice of climate model and convective parameterization[J]. Journal of Climate, 2004, 17(18):3477-3495.
[20] 董克勤, 齐树芬. 赤道东太平洋海温与西太平洋台风频数年际变化的关系[J]. 海洋学报, 1990, 12(4):505-509.
[21] Schreck C J, Knapp K R, Kossin J P. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS[J]. Monthly Weather Review, 2014, 142(10):3881-3899.
[22] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D14):4407.
[23] North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7):699-706.
[24] 梁梅, 林卉娇, 徐建军, 等. 1990-2018年北印度洋热带气旋统计特征[J]. 广东海洋大学学报, 2020, 40(4):51-59.
[25] Stark C, Ritchie E A, Tyo J S. Modelling tropical cyclone wind radii in the Australian region using the deviation angle variance technique[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama:IEEE, 2019:9342-9345.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn