首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于回归模型的南海表层漂流浮标轨迹模拟研究
作者:綦梦楠1 2  张娟1 2 
单位:1. 国家海洋局南海预报中心, 广东 广州 510310;
2. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510310
关键词:表层漂流浮标 回归模型 地转流 ROMS模式 
分类号:P731.21
出版年·卷·期(页码):2021·38·第四期(87-98)
摘要:
分别利用地转流、风海流和ROMS模式表层海流中的一项或者多项作为自变量,建立了关于表层漂流浮标漂移速度的回归模型,模拟了2017年12月—2018年2月和2019年12月—2020年2月的南海海域表层漂流浮标轨迹。根据回归模型结果对浮标进行72 h的漂移轨迹模拟,对比结果显示:基于地转流、风海流和ROMS模式表层海流3项作为自变量的回归模型(M_EGR)效果最好,其浮标模拟轨迹的72 h平均距离误差为38 km,平均角度误差为35°,平均综合技术得分为0.34。将风海流和地转流作为自变量加入到以ROMS模式表层海流结果为自变量的回归模型中,浮标模拟轨迹的72 h平均距离误差减少10 km,平均角度误差减少5°,平均技术得分提高0.09,特别是在涡旋附近区域的模拟效果得到显著提升。该方法对利用ROMS模式结果进行漂移浮标轨迹预测具有较好的校正效果。此外,风海流叠加地转流数据和ROMS模式数据在南海漂流浮标轨迹的预测方面具有较好的互补性;在南海流速相对稳定的区域,利用M_EGR模型得到的拟合流速可以较为准确地模拟漂移浮标轨迹,在南海涡旋活跃的区域,该模型效果有待进一步提升。
Using one or more of geostrophic current, wind-driven current and sea surface current simulated by ROMS as independent variables, a regression model of drifting buoy velocity is established to simulate the trajectory of surface drifting buoy in the South China Sea from December 2017 to February 2018 and from December 2019 to February 2020. The results show that the regression model (M_EGR) based on geostrophic current, wind current and ROMS surface current is the best in simulating the buoy trajectory with a 72 h-average error of 38 km and 35° for distance and angle, respectively, and an average technical score of 0.34. When the wind-driven current and geostrophic current are added as independent variables to the regression model using ROMS surface current as independent variables, the 72 h-average distance and angle errors of the simulated buoy trajectory are reduced by 10 km 5°, respectively, and the average technical score is increased by 0.09. In particular, the performance of regression model around eddy areas is significantly improved. This method has a good correction effect on the prediction of drifting buoy trajectory based on ROMS model results. In addition, the wind-driven current superimposed with geostrophic current is complementary to ROMS model data in predicting the trajectory of drifting buoys in the South China Sea. The buoy trajectory can be accurately simulated using the fitting velocity obtained by the M_EGR mode in in areas with relatively stable current speed in the South China Sea, while the results of the model need to be further improved in areas with active eddies.
参考文献:
[1] 肖文军, 堵盘军, 龚茂珣, 等. 上海沿海海上搜救预测模型系统的研究和应用[J]. 海洋预报, 2013, 30(4):79-86.
[2] 黄娟, 靳熙芳, 王硕, 等. 渤海海上突发事故应急响应辅助决策系统研制与应用[J]. 中国科技成果, 2014(6):28-29.
[3] 高松, 徐江玲, 艾波, 等. 基于SOA架构的国家海上搜救环境服务保障平台研发与应用[J]. 海洋预报, 2019, 36(3):71-77.
[4] 李广敏, 张娟. 南海海上事故时空分布、成因分析及对策[J]. 海洋开发与管理, 2013, 30(9):32-33.
[5] 方文东, 方国洪. 南海南部海洋环流研究的新进展[J]. 地球科学进展, 1998, 13(2):166-172.
[6] Hwang C, Chen S A. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research:Oceans, 2000, 105(C10):23943-23965.
[7] 鲍李峰, 陆洋, 王勇, 等. 利用多年卫星测高资料研究南海上层环流季节特征[J]. 地球物理学报, 2005, 48(3):543-550.
[8] 刘科峰, 蒋国荣, 陈奕德, 等. 基于卫星漂流浮标的南海表层海流观测分析[J]. 热带海洋学报, 2014, 33(5):13-21.
[9] Liu X H, Chen D K, Dong C M, et al. Variation of the Kuroshio intrusion pathways northeast of Taiwan using the Lagrangian method[J]. Science China Earth Sciences, 2016, 59(2):268-280.
[10] 苏京志, 王东晓, 陈举, 等. 利用回归模型模拟卫星跟踪海洋漂流浮标轨迹[J]. 地球科学进展, 2005, 20(6):607-617.
[11] Liu Y G, Weisberg R H, Vignudelli S, et al. Evaluation of altimetry-derived surface current products using Lagrangian drifter trajectories in the eastern Gulf of Mexico[J]. Journal of Geophysical Research:Oceans, 2014, 119(5):2827-2842.
[12] 王辉, 万莉颖, 秦英豪, 等. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10):1090-1104.
[13] 龙绍桥, 娄安刚, 谭海涛, 等. 海上溢油粒子追踪预测模型中的两种数值方法比较[J]. 中国海洋大学学报, 2006, 36(S1):157-162.
[14] 李云, 刘钦政, 王旭. 海上失事目标搜救应急预报系统[J]. 海洋预报, 2011, 28(5):77-81.
[15] Liu Y G, Weisberg R H. Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation[J]. Journal of Geophysical Research:Oceans, 2011, 116(C9):C09013.
[16] Bennett N D, Croke B F W, Guariso G, et al. Characterising performance of environmental models[J]. Environmental Modelling & Software, 2013, 40:1-20.
[17] Bouffard J, Nencioli F, Escudier R, et al. Lagrangian analysis of satellite-derived currents:Application to the North Western Mediterranean coastal dynamics[J]. Advances in Space Research, 2014, 53(5):788-801.
[18] 崔凤娟, 匡晓迪, 王玉. 南海中尺度涡年际变化特征及动力机制分析[J]. 海洋与湖沼, 2015, 46(3):508-516.
[19] 林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡的时空变化规律Ⅰ.统计特征分析[J]. 海洋学报, 2007, 29(3):14-22.
[20] Xiu P, Chai F, Shi L, et al. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research:Oceans, 2010, 115(C3):C03012.
[21] 赵新华, 侯一筠, 刘泽, 等. 基于卫星高度计和浮标漂流轨迹的海洋涡旋特征信息对比分析[J]. 海洋与湖沼, 2019, 50(4):759-764.
[22] Lumpkin, R. Global characteristics of coherent vortices from surface drifter trajectories[J]. Journal of Geophysical Research:Oceans, 2016, 121(2):1306-1321.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn