首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于CMIP5数据评估气候变化下西北航道风能资源的未来变化
作者:钱永明  邹昊  洪梅 
单位:国防科技大学气象海洋学院, 江苏 南京 211101
关键词:风能 气候变化 全球气候模式 西北航道 
分类号:TK81
出版年·卷·期(页码):2021·38·第四期(76-86)
摘要:
定量评估14个CMIP5全球气候模式再现西北航道历史阶段近地表风速的能力后,使用由多个性能优异的模式集成的风速数据,用于量化评估在3个未来时间段以及多个辐射强迫情景下与历史阶段风能密度的差异,以全面分析气候变化对西北航道未来风能资源的潜在影响。结果表明:与历史阶段相比,西北航道南部(70°N以南)大陆风能资源将会减少,但其北部地区(70°N以北)特别是波弗特海西侧未来风能资源会增加,到21世纪末,如果不采取任何缓解温室气体排放的措施,该地区风能资源增幅更大且年内变化将出现十分显著的增加,这种变异性的大幅增加,将给该区域的风能开发带来极大挑战。
This paper quantitatively assesses the ability of 14 global climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) in reproducing historical near-surface wind speed in the Northwest Passage, evaluates the difference of wind energy density between three future time periods with multiple radiation forcing scenarios and the historical period by using integrated wind speed data of multiple models with excellent performance, and comprehensively analyzes the potential impact of climate change on the future wind energy resources of the Northwest Passage. The results show that compared with the historical stage, the continental wind energy resources will decrease in the southern part of the Northwest Passage (south of 70° N) and will increase in its northern region (north of 70°N), especially west of the Beaufort Sea. By the end of 21st century, the wind energy resources will increase even more with significantly increased annual changes in that region if no measures are taken to mitigate greenhouse gas emissions, which would post a great challenge for the development of wind energy.
参考文献:
[1] IPCC. Climate change 2013:the physical science basis[C]//Stocker T F, Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 2013:1535.
[2] Wu L P, Yang X Y, Hu J Y. Assessment of Arctic sea ice simulations in CMIP5 models using a synthetical skill scoring method[J]. Acta Oceanologica Sinica, 2019, 38(9):48-58.
[3] Dick H, Christian H, Mats S. The northeast passage:an ecological approach[J]. Ambio, 1999, 28(3):210-211.
[4] Farré A B, Stephenson S R, Chen L L, et al. Commercial Arctic shipping through the Northeast Passage:routes, resources, governance, technology, and infrastructure[J]. Polar Geography, 2014, 37(4):298-324.
[5] Kiiski T, Solakivi T, Töyli J, et al. Long-term dynamics of shipping and icebreaker capacity along the Northern Sea Route[J]. Maritime Economics & Logistics, 2018, 20(3):375-399.
[6] Borgerson S G. Arctic meltdown-The economic and security implications of global warming[J]. Foreign Affairs, 2008, 87(2):63-77.
[7] 李珍, 胡麦秀."北极航道"开通与中国及其受影响区域的贸易增长潜力分析[J]. 极地研究, 2015(4):429-438.
[8] Earley K. Why renewables are winning the‘carbon war’[J]. Renewable Energy Focus, 2017, 19-20:117-120.
[9] Carvalho D, Rocha A, Santos C S, et al. Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques[J]. Applied Energy, 2013, 108:493-504.
[10] Pryor S C, Barthelmie R J. Climate change impacts on wind energy:a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1):430-437.
[11] He J K. China's INDC and non-fossil energy development[J]. Advances in Climate Change Research, 2015, 6(3/4):210-215.
[12] Castro-Santos L, Martins E, Soares C G. Cost assessment methodology for combined wind and wave floating offshore renewable energy systems[J]. Renewable Energy, 2016, 97:866-880.
[13] Moazzen I, Robertson B, Wild P, et al. Impacts of large-scale wave integration into a transmission-constrained grid[J]. Renewable Energy, 2016, 88:408-417.
[14] Barthelmie R J, Pryor S C. Potential contribution of wind energy to climate change mitigation[J]. Nature Climate Change, 2014, 4(8):684-688.
[15] Matevosyan J, Soder L. Minimization of imbalance cost trading wind power on the short-term power market[J]. IEEE Transactions on Power Systems, 2006, 21(3):1396-1404.
[16] Staffell I, Green R. How does wind farm performance decline with age?[J]. Renewable Energy, 2014, 66:775-786.
[17] Rusu E. A 30-year projection of the future wind energy resources in the coastal environment of the Black Sea[J]. Renewable energy, 2019, 139:228-234.
[18] Chade D, Miklis T, Dvorak D. Feasibility study of wind-tohydrogen system for Arctic remote locations-Grimsey island case study[J]. Renewable Energy, 2015, 76:204-211.
[19] Zheng C W, Li C Y, Gao C Z, et al. A seasonal grade division of the global offshore wind energy resource[J]. Acta Oceanologica Sinica, 2017, 36(3):109-114.
[20] Carvalho D, Rocha A, Gómez-Gesteira M, et al. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections[J]. Renewable Energy, 2017, 101:29-40.
[21] Pryor S C, Barthelmie R J. Assessing climate change impacts on the near-term stability of the wind energy resource over the united states[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20):8167-8171.
[22] Veronesi F, Grassi S, Raubal M. Statistical learning approach for wind resource assessment[J]. Renewable and Sustainable Energy Reviews, 2016, 56:836-850.
[23] Tobin I, Jerez S, Vautard R, et al. Climate change impacts on the power generation potential of a European mid-century wind farms scenario[J]. Environmental Research Letters, 2016, 11(3):034013.
[24] Pryor S C, Barthelmie R J. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20):8167-8171.
[25] Tian Q, Huang G, Hu K M, et al. Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979-2016[J]. Energy, 2019, 167:1224-1235.
[26] Brázdil R, Chromá K, Dobrovolny P, et al. Climate fluctuations in the Czech Republic during the period 1961-2005[J]. International Journal of Climatology, 2009, 29(2):223-242.
[27] Pirazzoli P A, Tomasin A. Recent near-surface wind changes in the central Mediterranean and Adriatic areas[J]. International Journal of Climatology, 2003, 23(8):963-973.
[28] Sherman P, Chen X Y, Mcelroy M B. Wind-generated electricity in China:decreasing potential, inter-annual variability and association with changing climate[J]. Scientific Reports, 2017, 7(1):16294.
[29] Shi P J, Zhang G F, Kong F, et al. Wind speed change regionalization in China (1961-2012)[J]. Advances in Climate Change Research, 2015, 6(2):151-158.
[30] Yu L J, Zhong S Y, Bian X D, et al. Climatology and trend of wind power resources in China and its surrounding regions:a revisit using climate forecast system reanalysis data[J]. International Journal of Climatology, 2016, 36(5):2173-2188.
[31] McVicar T R, Van Niel T G, Li L T, et al. Wind speed climatology and trends for Australia, 1975-2006:Capturing the stilling phenomenon and comparison with near-surface reanalysis output[J]. Geophysical Research Letters, 2008, 35(20):L20403.
[32] Sterl A, Bakker A M R, Van Den Brink H W, et al. Large-scale winds in the southern North Sea region:the wind part of the KNMI' 14 climate change scenarios[J]. Environmental Research Letters, 2015, 10(3):035004.
[33] Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4):485-498.
[34] van Vuuren D P, Edmonds J, Kainuma M, et al. The representative concentration pathways:an overview[J]. Climatic Change, 2011, 109(1):5.
[35] Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(7282):747-756.
[36] Chen L, Pryor S C, Li D L. Assessing the performance of intergovernmental panel on climate change AR5 climate models in simulating and projecting wind speeds over China[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D24):D24102.
[37] 柳婧, 宋晓姜, 王彰贵. 中国近海ASCAT和ERA-Interim风场资料的评估[J]. 海洋预报, 2019, 36(1):10-19.
[38] 单雨龙, 张韧, 毛科峰. 基于贝叶斯网络的朝鲜海峡大气能见度推理模型及实验[J]. 海洋预报, 2019, 36(1):86-96.
[39] Brands S, Herrera S, Fernández J, et al. How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa?[J]. Climate Dynamics, 2013, 41(3/4):803-817.
[40] 韩二红, 温新龙, 王彬滨, 等. 气象再分析资料在复杂山地风电场测风塔数据的插补应用[J]. 江西科学, 2017, 35(2):200-205, 234.
[41] Willmott C J. On the validation of models[J]. Physical Geography, 1981, 2(2):184-194.
[42] Warner J C, Geyer W R, Lerczak J A. Numerical modeling of an estuary:A comprehensive skill assessment[J]. Journal of Geophysical Research:Oceans, 2005, 110(C5):C05001.
[43] 宋巧红, 齐金鹏, 张煜. 基于多级Haar小波变换与KS统计的突变点快速探测方法[J]. 计算机工程, 2018, 44(5):14-18, 24.
[44] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
[45] 袁万立, 李朝锋. 结合HVS及SSIM的无参考模糊图像评价方法[J]. 计算机工程与应用, 2013, 49(1):210-212, 221.
[46] Jin C, Nara A, Yang J A, et al. Similarity measurement on human mobility data with spatially weighted structural similarity index (SpSSIM)[J]. Transactions in GIS, 2020, 24(1):104-122.
[47] Zhang Y, Guo G L, Li F N, et al. The interface control of butt joints in laser braze welding of aluminium-steel with coaxial powder feeding[J]. Journal of Materials Processing Technology, 2017, 246:313-320.
[48] Song Q B, Ni J J, Wang G T. A fast clustering-based feature subset selection algorithm for high-dimensional data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(1):1-14.
[49] Annan D J, Hargreaves J C. Reliability of the CMIP3 ensemble[J]. Geophysical Research Letters, 2010, 37(2):L02703.
[50] Pierce D W, Barnett T P, Santer B D, et al. Selecting global climate models for regional climate change studies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21):8441-8446.
[51] Räisänen J, Palmer T N. A probability and decision-model analysis of a multimodel ensemble of climate change simulations[J]. Journal of Climate, 2001, 14(15):3212-3226.
[52] 杨梅学, 姚檀栋, 何元庆. Mann-Whitney U非参数检验方法及其在冰心气候学研究中的应用[J]. 海洋地质与第四纪地质, 1999, 19(4):83-87.
[53] Fay M P, Proschan M A. Wilcoxon-mann-whitney or t-test? on assumptions for hypothesis tests and multiple interpretations of decision rules[J]. Statistics Surveys, 2010, 4:1-39.
[54] Rousseeuw P J, Croux C. Alternatives to the median absolute deviation[J]. Journal of the American Statistical Association, 1993, 88(424):1273-1283.
[55] Sachs L. Applied statistics:a handbook of techniques[M]. New York:Springer-Verlag, 1984:324-325.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn