首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
吕宋海峡水体通量时空变化特征的数值模拟研究
作者:宋星林1  王辉1 2  李凯1  朱学明1 2  任诗鹤1 2 
单位:1. 国家海洋环境预报中心, 北京 100081;
2. 自然资源部海洋灾害预报技术重点实验室, 北京 100081
关键词:吕宋海峡 水体通量 ROMS 季节变化 垂向结构 EEMD 
分类号:P731.2
出版年·卷·期(页码):2020·37·第四期(1-14)
摘要:
利用区域海洋数值模式(ROMS)建立了南中国海三维海洋环流数值模型。基于2006—2018年逐日平均的数值模拟结果,分析了吕宋海峡断面(120.75°E)的纬向流及通过断面的水体通量的时空变化规律,并采用集合经验模态分解法(EEMD)分别探讨了整层和表、中、底层水体通量的时间变化特征。结果表明:断面处纬向流呈现明显的多核结构,流态分布随季节变化较小,而流速变化受季节影响较大;断面水体通量存在明显的季节、月际变化;其垂向变化在年平均、春季、秋季和冬季时都呈现“三明治”结构,分界点分别在540 m和1 720 m左右,受黑潮分支强度的影响,在夏半年(5—9月)呈现“四层”结构,上表层厚度为45~80 m且存在月变化,5月为发展期,6—8月为成熟期,9月为消亡期;表层水体通量的时间变化对整层的变化影响最大,黑潮入侵的强度是导致整层及表层水体通量变化的主要因素。
A three-dimensional numerical ocean circulation model for the South China Sea is established using the Regional Ocean Modelling System (ROMS). Based on daily-mean model output from 2006 to 2018, we analyze the temporal and spatial variation of the zonal flow and the sea water volume transport (SWVT) through the section of Luzon Strait (120.75°E). Meanwhile, the temporal variation characteristics of SWVT in the whole layer, surface layer, middle layer and bottom layer are studied using the ensemble empirical mode decomposition (EEMD). The results show that the zonal flow through the Luzon Strait shows a multi-core structure with minor seasonal variation. However, the speed of the zonal flow is significantly affected by the seasonal cycle, and the SWVT reveals significant seasonal and monthly variation. The vertical distribution of SWVT shows a sandwich structure in its annual mean as well as in the spring, autumn and winter season with the separation lines at depths of about 540 m and 1720 m. Nevertheless, it shows a four-layer structure in the summer time (May to September) influenced by the intensity of the Kuroshio branch. The depth of the upper layer is about 45~80 m with monthly variation, and May, June to August and September are the development, mature and decay phase of the four-layer structure, respectively. The temporal variation of the SWVT in the surface layer has the greatest influence on the variation of the whole layer. The intensity of the Kuroshio intrusion is the main factor that causes the variation of the SWVT of the whole layer and surface layer.
参考文献:
[1] 黄企洲. 巴士海峡黑潮流速和流量的变化[J]. 热带海洋, 1983, 2(1):35-41.
[2] 郭忠信, 方文东. 1985年9月的吕宋海峡黑潮及其输送[J]. 热带海洋, 1988, 7(2):13-19.
[3] 鲍献文, 鞠霞, 吴德星. 吕宋海峡120°E断面水交换特征[J]. 中国海洋大学学报, 2009, 39(1):1-6, 76.
[4] Liang W D, Tang T Y, Yang Y J, et al. Upper-ocean currents around Taiwan[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(6-7):1085-1105.
[5] Tian J W, Yang Q X, Liang X F, et al. Observation of Luzon Strait transport[J]. Geophysical Research Letters, 2006, 33(19):L19607.
[6] Yang Q X, Tian J W, Zhao W. Observation of Luzon Strait transport in summer 2007[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2010, 57(5):670-676.
[7] 吴新荣, 晁国芳, 刘克修. 海洋再分析核心技术要素及发展趋势分析[J]. 海洋信息, 2018, 33(3):14-18.
[8] 张晶. 吕宋海峡水交换的季节变化研究[D]. 青岛:国家海洋局第一海洋研究所, 2013.
[9] 韩钦臣, 康建成, Han G Q, 等. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5):609-619.
[10] 方国洪, 魏泽勋, 崔秉昊, 等. 中国近海域际水、热、盐输运:全球变网格模式结果[J]. 中国科学(D辑), 2002, 32(12):969-977.
[11] Qu T D, Kim Y Y, Yaremchuk M, et al. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?[J]. Journal of Climate, 2004, 17(18):3644-3657.
[12] 赵伟. 吕宋海峡水交换的季节性变化研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2007.
[13] Tozuka T, Qu T D, Yamagata T. Dramatic impact of the South China Sea on the Indonesian Throughflow[J]. Geophysical Research Letters, 2007, 34(12):L12612.
[14] Wang D X, Liu Q Y, Huang R X, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33(14):L14605.
[15] 李云, 俞永强. 涡分辨率全球海洋环流模式LICOM模拟的吕宋海峡流场的季节变化[J]. 气候与环境研究, 2014, 19(5):547-558.
[16] 王兆毅, 刘桂梅, 王辉, 等. 吕宋海峡水交换季节和年际变化特征的数值模拟研究[J]. 海洋学报, 2016, 38(5):1-13.
[17] Zhao W, Zhou C, Tian J W, et al. Deep water circulation in the Luzon Strait[J]. Journal of Geophysical Research:Oceans, 2014, 119(2):790-804.
[18] 李景冉. 模型空间分辨率对模拟南海动力过程的影响研究[D]. 厦门:厦门大学, 2018.
[19] Zu T T, Xue H J, Wang D X, et al. Interannual variation of the South China Sea circulation during winter:intensified in the southern basin[J]. Climate Dynamics, 2019, 52(3-4):1917-1933.
[20] Wang Q, Zeng L L, Shu Y Q, et al. Interannual variability of South China Sea winter circulation:response to Luzon Strait transport and El Niño wind[J]. Climate Dynamics, 2020, 54(1-2):1145-1159.
[21] Uchiyama Y, Takaura N, Okada N, et al. Residual circulations and associated water mass transport in the South China Sea analyzed with a coupled HYCOM-ROMS downscaling ocean model[C]//International Symposium on Green & Sustainable Technology. Malaysia:UTAR Perak Campus, 2019.
[22] 王斌, 赵玮. 海洋模式的水平分辨率对吕宋海峡深层环流数值模拟结果的影响[J]. 中国海洋大学学报, 2013, 43(4):1-8.
[23] Qu T D, Mitsudera H, Yamagata T. Intrusion of the North Pacific waters into the South China Sea[J]. Journal of Geophysical Research:Oceans, 2000, 105(C3):6415-6424.
[24] Metzger E J, Hurlburt H E. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean[J]. Journal of Geophysical Research:Oceans, 1996, 101(C5):12331-12352.
[25] Metzger E J, Hurlburt H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. Journal of Physical Oceanography, 2001, 31(7):1712-1732.
[26] 孙剑, 侯立培, 谢巨伦. 吕宋海峡黑潮季节变化初步分析[J]. 海洋预报, 2006, 23(S1):60-63.
[27] 黄华梅, 王银霞, 王强, 等. 吕宋海峡Ekman输运和南海SST的相关性分析[J]. 海洋预报, 2012, 29(2):50-58.
[28] Qu T D, Du Y, Meyers G, et al. Connecting the tropical Pacific with Indian Ocean through South China Sea[J]. Geophysical Research Letters, 2005, 32(24):L24609.
[29] Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topographyfollowing-coordinate oceanic model. Ocean Modelling, 2005, 9(4):347-404.
[30] Carnes M R. Description and evaluation of GDEM-V3.0[R]. NRL/MR/7330-09-9165. Naval Research Laboratory Stennis Space Center, 2009.
[31] Carton J A, Chepurin G A, Chen L G. SODA3:A new ocean climate reanalysis. Journal of Climate, 2018, 31(17):6967-6983.
[32] Lellouche J M, Greiner E, Le Galloudec O, et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Science, 2018, 14(5):1093-1126.
[33] Nan F, Xue H J, Yu F. Kuroshio intrusion into the South China Sea:A review[J]. Progress in Oceanography, 2015, 137:314-333.
[34] Yang Q X, Tian J W, Zhao W. Observation of material fluxes through the Luzon Strait[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(1):26-32.
[35] Yaremchuk M, McCreary Jr J, Yu Z J, et al. The South China Sea throughflow retrieved from climatological data[J]. Journal of Physical Oceanography, 2009, 39(3):753-767.
[36] Hsin Y C, Wu C R, Chao S Y. An updated examination of the Luzon Strait transport[J]. Journal of Geophysical Research:Oceans, 2012, 117(C3):C03022.
[37] Huang N E, Wu Z H. A review on Hilbert-Huang transform:Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2):RG2006.
[38] Wu Z H, Huang N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
[39] Wu C R. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific[J]. Progress in Oceanography, 2013, 110:49-58.
[40] 杨龙奇, 许东峰, 徐鸣泉, 等. 黑潮入侵南海的强弱与太平洋年代际变化及厄尔尼诺-南方涛动现象的关系[J]. 海洋学报, 2014, 36(7):17-26.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn