首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
登陆北上台风突然转向的预报着眼点
作者:张子涵  郑丽娜 
单位:山东省东营市气象局, 山东 东营 257091
关键词:台风 登陆北上 高频气流 低频气流 
分类号:P457.8
出版年·卷·期(页码):2020·37·第三期(46-53)
摘要:
以2018年两个登陆北上影响山东的台风"摩羯"和"温比亚"为例,讨论分析了深入内陆的台风在突然转向时刻的预报着眼点。结果表明:台风的移动路径很大程度上取决于副热带高压(大陆高压)的位置与强度,当高压偏强时,可由三力平衡原理确定台风未来的移动方向。同时,300~200 hPa高度层的风向可以提前18 h指示台风即将发生路径偏折。15日08时,台风"摩羯"转向角较大,主要原因是受高频引导气流影响,且沿着正高频涡度平流的方向移动。而"温比亚"进入渤海向东北方向移动,是受全风速与低频气流影响。这表明高频流对转向角度较大的台风起引导作用,而环境风场对转向角度不大的台风起作用。
The key forecasting factors of typhoon's sharp turn are discussed and analyzed by taking typhoon YAJI and RUMBIA as examples, which made landfall and affected Shandong province in 2018. The results show that the typhoon track largely depends on the location and intensity of the subtropical high (continental high). The typhoon direction can be predicted using the principle of three forces balance when the subtropical high is more significant. Meanwhile, the wind direction of the 300~200 hPa level can be used to predict the change of typhoon direction 18 hours in advance. The sharp turn of typhoon YAJI at 08:00 on August 15 is due to the influence of high-frequency airflow and its movement along the positive high-frequency vorticity advection. The full wind speed and low-frequency airflow lead typhoon RUMBIA turn to the northeastward when it enters Bohai Sea. It can be concluded that high-frequency advection favors the sharp turn of typhoon direction, while the environmental wind field influences the typhoon with subtle change in direction.
参考文献:
[1] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 4版. 北京:气象出版社, 2007:523-528.
[2] 张娇艳, 吴立广, 张强. 全球变暖背景下我国热带气旋灾害趋势分析[J]. 热带气象学报, 2011, 27(4):442-454.
[3] 许映龙, 张玲, 高拴柱. 我国台风预报业务的现状及思考[J]. 气象, 2010, 36(7):43-49.
[4] 刘翔, 蒋国荣, 卓海峰. SST对台风"珍珠" 影响的数值试验[J]. 海洋预报, 2009, 26(3):1-11.
[5] 孙密娜, 杨洋, 姜皓严. 影响黄渤海区域两次北上台风的对比分析[J]. 海洋预报, 2018, 35(5):74-84.
[6] 胡耀辉, 赵彪, 赵杰臣. SST对台风过程影响的敏感性试验——以"杰拉华"为例[J]. 海洋预报, 2019, 36(1):76-85.
[7] 罗小莉, 姚才, 谭金凯. 登陆华南台风的频数及强度变化特征分析[J]. 海洋预报, 2018, 35(4):58-67.
[8] Bender M A, Tuleya R E, Kurihara Y. A numerical study of the effect of a mountain range on a landfalling tropical cyclone[J]. Monthly Weather Review, 1985, 113(4):567-583.
[9] Wu C C, Emanuel K A. Interaction of a baroclinic vortex with background shear:application to hurricane movement[J]. Journal of the Atmospheric Sciences, 1993, 50(1):62-76.
[10] Shapiro L J. Hurricane vortex motion and evolution in a threelayer model[J]. Journal of the Atmospheric Sciences, 1992, 49(2):140-153.
[11] Ueno M. Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region[J]. Journal of the Meteorological Society of Japan. Ser. II, 2007, 85(2):115-136.
[12] Wang B, Elsberry R L, Wang Y Q, et al. Dynamics in tropical cyclone motion:a review[J]. Journal of Atmospheric Sciences, 1998, 22(4):535-547.
[13] 倪钟萍, 吴立广, 张玲. 2005-2010年台风突变路径的预报误差及其环流背景[J]. 气象, 2013, 39(6):917-727.
[14] 段晶晶, 吴立广, 倪钟萍. 2004年台风"艾利"与"米雷"路径异常变化分析[J]. 气象学报, 2014, 72(1):1-11.
[15] 史达伟, 李超, 韩桂荣, 等. 1710号台风"海棠"前部龙卷天气分析[J]. 海洋预报, 2018, 35(5):53-59.
[16] 张海霞, 崔晓鹏, 康凤琴, 等. 邯郸地区一次登陆台风大暴雨过程观测分析[J]. 高原气象, 2007, 26(5):980-991.
[17] Liang J, Wu L G, Ge X Y, et al. Monsoonal influence on typhoon Morakot (2009). Part Ⅱ:numerical study[J]. Journal of the Atmospheric Sciences, 2011, 68(10):2222-2235.
[18] Ko K C, Hsu H H. ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western north Pacific[J]. Journal of Climate, 2009, 22(3):582-599.
[19] Luo Z X, Davidson N E, Ping F, et al. Multiple-scale interactions affecting tropical cyclone track changes[J]. Advances in Mechanical Engineering, 2011, 3, doi:10.1155/2011/782590.
[20] Wu L G, Wang B. A potential vorticity tendency diagnostic approach for tropical cyclone motion[J]. Monthly Weather Review, 2000, 128(6):1899-1911.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn