首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
谱松弛同化技术对台风季节活动数值模拟的影响
作者:渠鸿宇  李响  凌铁军  张蕴斐 
单位:国家海洋环境预报中心 自然资源部海洋灾害预报技术研究重点试验室, 北京 100081
关键词:台风季节活动 COAWST模式 谱松弛 
分类号:P444
出版年·卷·期(页码):2020·37·第三期(18-28)
摘要:
采用COAWST模式针对2015年5月1日-11月1日的台风季节活动设计了两组对比试验,探讨谱松弛同化技术对台风季节活动数值模拟的影响。通过比较两种试验结果中的台风季节信息发现:谱松弛能够显著提高对台风频数、强度、气旋累积能量分布以及路径密度分布的模拟。这种改善与模式中大尺度场如环流场、位势高度场、海温的改善息息相关。由于谱松弛的作用,模式能够基本再现边界场中的大尺度信息,避免台风活动导致大尺度场发生严重漂移,同时模式自身中小尺度过程能够自由发展,这使得模拟的台风季节活动更加符合观测。
Spectral nudging is one of the assimilation schemes, which plays an important role in improving the simulation of large-scale fields in s regional model. In this paper, COAWST model is used to design two sets of comparative experiments for typhoon seasonal activity from May 1 to November 1, 2015, and the influence of spectral nudging assimilation technology on simulation of typhoon seasonal activity is investigated. By comparing the typhoon seasonal information in the two experiments, it is found that spectral nudging can significantly improve the simulation of typhoon frequency, intensity, accumulated cyclone energy distribution and track density distribution. The improvement is closely related to the improvement of the large-scale fields in the model, such as the circulation field, the potential height field and the sea surface temperature. Due to the effect of spectral nudging, model can largely reproduce the large-scale information in the boundary field and avoid serious drift of the large-scale field caused by typhoon activity. Meanwhile, the small-scale process of the model itself can freely develop, which makes the simulated typhoon seasonal activity agree well with the observation.
参考文献:
[1] 朱乾根. 天气学原理和方法[M]. 4版. 北京:气象出版社, 2007.
[2] 郑文荣, 李江南, 蔡建春, 等. 西北太平洋超强台风时空分布特征及其成因[J]. 海洋预报, 2009, 26(4):19-24.
[3] 许映龙, 张玲, 高拴柱. 我国台风预报业务的现状及思考[J]. 气象, 2010, 36(7):43-49.
[4] 王喜年. 风暴潮灾害及其预报与防御对策[J]. 海洋预报, 1998(3):26-31.
[5] 丁亚梅, 董克慧, 周林, 等. 大气-海浪耦合模式对台风"碧利斯"的数值模拟[J]. 海洋预报, 2009, 26(2):15-26.
[6] Zhan R F, Wang Y Q, Ying M. Seasonal forecasts of tropical cyclone activity over the western North Pacific:a review[J]. Tropical Cyclone Research and Review, 2012, 1(3):307-324.
[7] Chen J H, Lin S J. Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model[J]. Journal of Climate, 2013, 26(2):380-398.
[8] 高学杰, 赵宗慈, 丁一汇, 等. 温室效应引起的中国区域气候变化的数值模拟Ⅰ:模式对中国气候模拟能力的检验[J]. 气象学报, 2003, 61(1):20-28.
[9] Giorgi F, Marinucci M R, Bates G T. Development of a second-generation regional climate model (RegCM2). Part I:boundary-layer and radiative transfer processes[J]. Monthly Weather Review, 1993, 121(10):2794-2813.
[10] Davies H C. A lateral boundary formulation for multi-level prediction models[J]. Quarterly Journal of the Royal Meteorological Society, 1976, 102(432):405-418.
[11] 魏和林, 符淙斌, 王维强. 区域气候模式侧边界的处理对东亚夏季风降水模拟的影响[J]. 大气科学, 1998, 22(5):779-790.
[12] Stauffer D R, Seaman N L, Binkowski F S. Use of fourdimensional data assimilation in a limited-area mesoscale model part II:effects of data assimilation within the planetary boundary layer[J]. Monthly Weather Review, 1991, 119(3):734-754.
[13] Waldron K M, Paegle J, Horel J D. Sensitivity of a spectrally filtered and nudged limited-area model to outer model options[J]. Monthly Weather Review, 1996, 124(3):529-547.
[14] Von Storch H, Langenberg H, Feser F. A spectral nudging technique for dynamical downscaling purposes[J]. Monthly Weather Review, 2000, 128(10):3664-3673.
[15] Liu P, Tsimpidi A P, Hu Y, et al. Differences between downscaling with spectral and grid nudging using WRF[J]. Atmospheric Chemistry and Physics, 2012, 12(8):3601-3610.
[16] Knutson T R, Sirutis J J, Garner S T, et al. Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model[J]. Bulletin of the American Meteorological Society, 2007, 88(10):1549-1565.
[17] 曹剑, 吴立广, 潘维玉. 2006年7-9月西北太平洋热带气旋季节活动的数值模拟[J]. 大气科学学报, 2012, 35(2):148-162.
[18] Wang H, Wang Y Q, Xu H M. Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging:a case study of typhoon Megi (2010)[J]. Acta Meteorologica Sinica, 2013, 27(4):455-475.
[19] Choi S J, Lee D K. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations[J]. Advances in Atmospheric Sciences, 2016, 33(6):730-742.
[20] 渠鸿宇, 李响, 凌铁军, 等. 谱松弛同化技术对台风路径及强度模拟的影响[J]. 海洋预报, 2018, 35(3):17-29.
[21] Peng S Q, Xie L, Liu B, et al. Application of scale-selective data assimilation to regional climate modeling and prediction[J]. Monthly Weather Review, 2010, 138(4):1307-1318.
[22] Lai Z J, Hao S, Peng S Q, et al. On improving tropical cyclone track forecasts using a scale-selective data assimilation approach:a case study[J]. Natural Hazards, 2014, 73(3):1353-1368.
[23] Warner J C, Armstrong B, He R Y, et al. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3):230-244.
[24] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 3[R]. NCAR Tech Note NCAR/TN-475+STR. Boulder, Colorado, USA:NCAR, 2008:113.
[25] Shchepetkin A F, McWilliams J C. The Regional Oceanic Modeling System (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4):347-404.
[26] Shchepetkin A F, McWilliams J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. Journal of Geophysical Research:Oceans, 2003, 108(C3):3090.
[27] Larson J W, Jacob R L, Foster I, et al. The model coupling toolkit[C]//International Conference San Francisco on Computational Science. CA, USA:Springer, 2001:185-194.
[28] Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010, 91(8):1015-1057.
[29] Saha S, Moorthi S, Wu X R, et al. The NCEP climate forecast system version 2[J]. Journal of Climate, 2014, 27(6):2185-2208.
[30] Ying M, Zhang W, Yu H, et al. An overview of the china meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301.
[31] Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH:a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3):487-503.
[32] Chang S W, Madala R V. Numerical simulation of the influence of sea surface temperature on translating tropical cyclones[J]. Journal of the Atmospheric Sciences, 1980, 37(12):2617-2630.
[33] Ren X J, Perrie W. Air-sea interaction of typhoon Sinlaku (2002) simulated by the Canadian MC2 model[J]. Advances in Atmospheric Sciences, 2006, 23(4):521-530.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn