首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
台风“Megi”(2010)过程中海浪的特征及其对大气海洋的影响研究
作者:徐海波1 2  杜华栋1  项杰1  操俊伟3 
单位:1. 国防科技大学气象海洋学院, 江苏 南京 211101;
2. 中国人民解放军66199部队, 北京 100043;
3. 太原卫星发射中心, 山西 太原 030000
关键词:海气耦合 台风浪 海面粗糙度 潜热通量 海面拖曳 海洋混合 
分类号:P731.22
出版年·卷·期(页码):2020·37·第三期(6-17)
摘要:
使用海-气-浪耦合系统模拟了台风"Megi"(2010)过程中海洋与大气变化过程,重点研究了台风浪的有效波高、波周期、波向和波长等波参数的分布特征,并通过一组针对海浪的控制试验检验了海浪对台风及海洋环流的影响状况。结果表明:台风过程中的海浪有效波高最高达到了12 m以上,波高高值区域在移动方向的右前方;台风中心附近的海浪波长最长,周期最大,谱峰周期大于平均周期,谱峰波向较平均波向向右偏转了15°~20°。通过与未耦合海浪模式的控制试验对比发现,通过拖曳作用,海浪调节了海面风速的大小,使得台风后部风速减小约3~5 m/s;同时,由于海面粗糙度的增加,台风内核区域潜热通量有所增加,最大达到了15%。另外,海浪的加入加剧了海洋混合,导致了更大程度的降温,模拟值更接近实况值,同时也改变了海流的方向,影响了SST等海洋热动力状态模拟的准确性。
Based on the fully Coupled Ocean-Atmosphere-Wave-Sediment Transport system, this paper simulates the response of atmosphere and ocean to typhoon "Megi" (2010), and analyzes the distribution characteristics of typhoon wave including the significant wave height, wave period, wave direction and wavelength. Moreover, the influence of wave on typhoon and ocean circulation is examined using a set of control run. The results show that the area of high wave height locates to the right-front of the typhoon moving direction with a maximum value of over 12 m. The longest wavelength and maximum wave period locates by the typhoon center, where the wave peak period is longer than the mean period and the wave peak direction is 15°~30° to the right of the mean direction. A control run without coupling wave is conducted to analyze its influence on typhoon and ocean circulation. It is found that the sea surface wind speed of the rear of typhoon is reduced by 3~5 m/s due to the ocean wave drag effect. The latent heat flux in the typhoon core is enlarged up to 15% as a result of the increase of sea surface roughness induced by wave. Furthermore, the ocean mixing is strengthened by wave, which leads to the cooling of sea surface temperature and the direction change of ocean currents.
参考文献:
[1] 许富祥, 余宙文. 中国近海及其邻近海域灾害性海浪监测和预报[J]. 海洋预报, 1998, 15(3):63-68.
[2] The Wamdi Group. The WAM model-a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12):1775-1810.
[3] Tolman H L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents[J]. Journal of Physical Oceanography, 1991, 21(6):782-797.
[4] Benoit M, Marcos F, Becq F. Development of a third generation shallow-water wave model with unstructured spatial meshing[C]//Proceedings of the 25th International Conference on Coastal Engineering. Orlando, Florida:American Society of Civil Engineers, 1996:465-473.
[5] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. Model description and validation[J]. Journal of Geophysical Research:Oceans, 1999, 104(C4):7649-7666.
[6] Chu P C, Cheng K F. South China Sea wave characteristics during typhoon Muifa passage in winter 2004[J]. Journal of Oceanography, 2008, 64(1):1-21.
[7] 陈希, 沙文钰, 闵锦忠. 台湾岛邻近海域台风浪的模拟研究[J]. 海洋预报, 2002, 19(4):1-10.
[8] Ou S H, Liau J M, Hsu T W, et al. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan[J]. Ocean Engineering, 2002, 29(8):947-971.
[9] Zhang Y C, Perrie W. Feedback mechanisms for the atmosphere and ocean surface[J]. Boundary-Layer Meteorology, 2001, 100(2):321-348.
[10] Chen S S, Price J F, Zhao W, et al. The CBLAST-hurricane program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction[J]. Bulletin of the American Meteorological Society, 2007, 88(3):311-318.
[11] Chen S S, Zhao W, Donelan M A, et al. Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models:results from CBLAST-Hurricane[J]. Journal of the Atmospheric Sciences, 2013, 70(10):3198-3215.
[12] Wada A, Kohno N, Kawai Y. Impact of wave-ocean interaction on typhoon Hai-Tang in 2005[J]. SOLA, 2010, 6A(SpecialEdition):13-16.
[13] Liu B, Liu H Q, Xie L, et al. A coupled atmosphere-wave-ocean modeling system:simulation of the intensity of an idealized tropical cyclone[J]. Monthly Weather Review, 2011, 139(1):132-152.
[14] Zambon J B, He R Y, Warner J C. Investigation of hurricane Ivan using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model[J]. Ocean Dynamics, 2014, 64(11):1535-1554.
[15] Olabarrieta M, Warner J C, Armstrong B, et al. Ocean-atmosphere dynamics during Hurricane Ida and Nor' Ida:an application of the coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system[J]. Ocean Modelling, 2012, 43-44:112-137.
[16] 刘娜, 李本霞, 王辉, 等. 西北太平洋浪流相互作用对有效波高的影响研究[J]. 海洋学报, 2016, 38(9):21-31.
[17] Warner J C, Armstrong B, He R Y, et al. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3):230-244.
[18] Liu N, Ling T J, Wang H, et al. Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system[J]. Journal of Ocean University of China, 2015, 14(2):199-209.
[19] 徐海波, 杜华栋, 项杰, 等. 使用高分辨率海-气-浪耦合模式COAWST对 "Megi" (2010)的一次模拟试验[J]. 海洋预报, 2019, 36(2):57-67.
[20] Longuet-Higgins M S, Stewart R W. Radiation stresses in water waves; a physical discussion, with applications[J]. Deep Sea Research and Oceanographic Abstracts, 1964, 11(4):529-562.
[21] Mellor G L. The depth-dependent current and wave interaction equations:a revision[J]. Journal of Physical Oceanography, 2008, 38(11):2587-2596.
[22] Charnock H. Wind stress on a water surface[J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(350):639-640.
[23] Taylor P K, Yelland M J. The dependence of sea surface roughness on the height and steepness of the waves[J]. Journal of Physical Oceanography, 2001, 31(2):572-590.
[24] Komen G J, Hasselmann S, Hasselmann K. On the existence of a fully developed wind-sea spectrum[J]. Journal of Physical Oceanography, 1984, 14(8):1271-1285.
[25] Madsen O S, Poon Y K, Graber H C. Spectral wave attenuation by bottom friction:theory[C]//Proceedings of the 21st International Conference on Coastal Engineering. Costa del Sol-Malaga, Spain:American Society of Civil Engineers, 1988:492-504.
[26] Chen S S, Curcic M. Ocean surface waves in Hurricane Ike (2008) and Superstorm sandy (2012):coupled model predictions and observations[J]. Ocean Modelling, 2016, 103:161-176.
[27] 丁维炜, 齐琳琳, 汪汇洁, 等. 中尺度海气浪耦合模式对西北太平洋双台风影响下的海浪预报研究[J]. 海洋技术学报, 2018, 37(3):41-48.
[28] 高成志, 郑崇伟. SWAN模式对西行台风所致台风浪的模拟分析[J]. 哈尔滨工程大学学报, 2018, 39(7):1158-1164.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn