首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
耦合模式中海浪参数对台风浪预报的影响研究
作者:丁维炜1  齐琳琳2  赵文斌3  刘潮4  赵金波5  孙苗芯6 
单位:1. 95171部队气象台, 广东 广州 510000;
2. 空军研究院, 北京 100085;
3. 61741部队, 北京 100094;
4. 75839部队, 广东 广州 510000;
5. 61255部队气象台, 山西 侯马 043000;
6. 武警第二机动总队直升机支队湘阴场站, 湖南 长沙 410200
关键词:中尺度海气浪耦合模式 台风浪 海浪参数化 
分类号:P731.33
出版年·卷·期(页码):2019·36·第一期(37-51)
摘要:
以西北太平洋一次“双台风”共同影响下的台风浪为例,针对模式中风摄入和白帽耗散、底摩擦、波破碎、波-波非线性相互作用等海浪物理过程对台风浪预报的影响进行了敏感性试验分析。在此基础上,基于各物理过程最优参数化方案探讨了耦合模式和单独海浪模式的海浪预报性能,分析了耦合模式的海浪预报场分布特征。结果表明:不同海浪物理过程参数化对于波高预报的准确性是有所差异的。在相对最优的海浪各参数化方案组合下,无论耦合模式还是单独海浪模式都能较好地反映波高的变化和分布趋势。相比而言,耦合模式对于台风浪大值区的浪高预报要比单独海浪模式的更接近观测,且可以很好地刻画出双台风影响下浪的分布演变特征,对于西太平洋台风浪的预报具有很好的适用性。
Based on the simulation of binary typhoons over the northwestern Pacific Ocean, a serie of sensitivity experiments are conducted to study the parametric effects of wave physical processes on typhoon wave forecast, such as wind energy input, white capping, bottom friction, depth-induced wave breaking, and nonlinear wave interactions. We also discuss the forecast skill of coupled model and individual wave model based on optimal parameterization scheme of each process, and analyze the characteristics of ocean wave in coupled model. It is shown that the accuracy of wave height forecast varies among the parameterization of different wave physical processes. Both coupled model and individual wave model can reasonably depict the wave height variation and distribution under a combination of the relatively optimal wave parameterization schemes. It is found that the coupled mode can better characterize the distribution and evolution of binary typhoon wave, and predict the wave height with more accuracy over the high wave areas of binary typhoons compared to individual wave model. The study demonstrates good applicability of coupled model in forecasting typhoon wave over the northwestern Pacific Ocean.
参考文献:
[1] 梁小力, 王毅. 基于SWAN模式的全球有效波高数值预报结果之初步验证[J]. 海洋预报, 2015, 32(6):1-9.
[2] Group T W. The WAM model-a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12):1775-1810.
[3] 张洪生, 辜俊波, 王海龙, 等. 利用WAVEWATCH和SWAN嵌套计算珠江口附近海域的风浪场[J]. 热带海洋学报, 2013, 32(1):8-17.
[4] 李燕, 薄兆海. SWAN模式对黄渤海海域浪高的模拟能力试验[J]. 海洋预报, 2005, 22(3):75-82.
[5] Huang Y, Weisberg R H, Zheng L Y, et al. Gulf of Mexico hurricane wave simulations using SWAN:bulk formula-based drag coefficient sensitivity for hurricane Ike[J]. Journal of Geophysical Research:Oceans, 2013, 118(8):3916-3938.
[6] 梁书秀, 孙昭晨, 尹洪强, 等. 基于SWAN模式的南海台风浪推算的影响因素分析[J]. 海洋科学进展, 2015, 33(1):19-30.
[7] 陈子, 焱木. 水东湾落潮三角洲海区底摩擦对波浪变形的作用[J]. 中山大学学报(自然科学版), 1996, 35(S1):285-291.
[8] 应王敏, 郑桥, 朱陈陈, 等. 基于SWAN模式的"灿鸿"台风浪数值模拟[J]. 海洋科学, 2017, 41(4):108-117.
[9] Kalantzi G D, Gommenginger C, Srokosz M. Assessing the performance of the dissipation parameterizations in WAVEWATCH Ⅲ using collocated altimetry data[J]. Journal of Physical Oceanography, 2010, 39(11):2800-2819.
[10] Warner J C, Armstrong B, He R Y, et al. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3):230-244.
[11] Liu B, Liu H Q, Xie L, et al. A coupled atmosphere-wave-ocean modeling system:simulation of the intensity of an idealized tropical cyclone[J]. Monthly Weather Review, 2010, 139(1):132-152.
[12] 关皓, 周林, 薛彦广, 等. 南海中尺度大气-海流-海浪耦合模式的建立及应用[J]. 热带气象学报, 2012, 28(2):211-218.
[13] 丁亚梅, 董克慧, 周林, 等. 大气-海浪耦合模式对台风"碧利斯" 的数值模拟[J]. 海洋预报, 2009, 26(2):15-26.
[14] 关皓, 周林, 史尧, 等. 利用jason-1资料验证区域海气耦合模式模拟台风浪的有效性[J]. 海洋预报, 2009, 26(1):84-93.
[15] Zhang J F, Huang L W, Wen Y Q, et al. A distributed coupled atmosphere-wave-ocean model for typhoon wave numerical simulation[J]. International Journal of Computer Mathematics, 2009, 86(12):2095-2103.
[16] 詹思玙, 齐琳琳, 卢伟, 等. 基于区域海气浪耦合模式的海洋风场预报性能研究[J]. 海洋预报, 2017, 34(6):16-26.
[17] Mulligan R P, Bowen A J, Hay A E, et al. Whitecapping and wave field evolution in a coastal bay[J]. Journal of Geophysical Research:Oceans, 2008, 113(C3):C03008.
[18] Miles J W. On the generation of surface waves by shear flows. IV. [J]. Journal of Fluid Mechanics, 1962, 13:433-448.
[19] Janssen P A E M. Wave-induced stress and the drag of air flow over sea waves[J]. Journal of Physical Oceanography, 1989, 19(6):745-754.
[20] Komen G J, Hasselmann K, Hasselmann K. On the existence of a fully developed wind-sea spectrum[J]. Journal of Physical Oceanography, 1984, 14(8):1271-1285.
[21] Snyder R L, Dobson F W, Elliott J A, et al. Array measurements of atmospheric pressure fluctuations above surface gravity waves[J]. Journal of Fluid Mechanics, 1981, 102:1-59.
[22] 陈希, 闵锦忠, 沙文钰, 等. 近岸海浪模式在中国东海台风浪模拟中的应用——数值模拟及物理过程研究[J]. 海洋通报, 2003, 22(2):9-16.
[23] Hasselmann K, Barnett T P, Bouws E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)[J]. Deutsche Hydrographische Zeitschrift, 1973, A8(12):95.
[24] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. model description and validation[J]. Journal of Geophysical Research:Oceans, 1999, 104(C4):7649-7666.
[25] Madsen O S, Poon Y K, Graber H C. Spectral wave attenuation by bottom friction:theory[C]//Proceedings of the 21st international conference on coastal engineering. ASCE, 1988:492-504.
[26] 赵凯, 栾曙光, 张瑞瑾. 强台风"珍珠"引起的近岸波浪场数值分析[J]. 海洋预报, 2011, 28(4):35-42.
[27] Kaminsky G M, Kraus N C. Evaluation of depth-limited wave breaking criteria[C]//Proceedings of 2nd international symposium on ocean wave measurements and analysis. New Orleans:ASCE, 1993:180-193.
[28] 赵栋梁. 非线性相互作用对高频方向谱估计的影响[J]. 青岛海洋大学学报, 1998, 28(4):531-535.
[29] 罗浩. SWAN模式渤海湾海浪数值模拟研究[D]. 天津:天津大学, 2012.
[30] Hwang P A, Teague W J, Jacobs G A. Spaceborne measurements of kuroshio modification of wind and wave properties in the Yellow and East China Seas[J]. Journal of Advanced Marine Science and Technology Society, 2000, 4(2):155-164.
[31] 刘娜, 李本霞, 王辉, 等. 西北太平洋浪流相互作用对有效波高的影响研究[J]. 海洋学报, 2016, 38(9):21-31.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博思汇文数字科技有限公司设计开发 技术服务电话:400-921-9838