首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于CCMP风场的中国近海风能资源的长期变化分析
作者:高成志1  郑崇伟1  陈璇2 
单位:1. 海军大连舰艇学院, 辽宁 大连 116018;
2. 解放军75822部队, 广东 广州 510510
关键词:CCMP风场 中国海及周边海域 风能密度 长期变化趋势 
分类号:P74
出版年·卷·期(页码):2017·34·第五期(27-35)
摘要:
基于1988-2009年高时空分辨率的CCMP风场资料,分析了中国海及周边海域风能密度的分布特征,给出了这些海域风能密度的整体变化趋势、变化趋势的区域性差异和季节性差异,以期为风能资源开发工作提供科学依据。结果表明:(1)中国海及周边海域风能密度大值区主要分布于琉球群岛-台湾岛-南海大风区一线,呈东北-西南向带状分布,年平均风能密度能达到450 W/m2以上。渤海、渤海海峡、黄海北部的年平均风能密度基本在200 W/m2以内;黄海中南部为200~350 W/m2;东海基本都在300 W/m2以上;5°N以北的南海大部分海域的风能密度基本都在200 W/m2以上;(2)近22 a期间,该区域的风能密度整体上以4.1637 W/(m2·yr)的速度逐年递增;(3)中国海及周边海域大范围海域的风能密度表现出显著性逐年线性递增趋势,同时也表现出较大的区域性差异,仅部分零星海域的风能密度表现出显著性递减趋势;(4)中国海及周边海域风能密度的变化趋势在近22 a期间表现出很大的季节性差异。冬季的递增趋势最为强劲,呈递增趋势的区域范围夜最广,春季次之,夏季和秋季呈显著性递增的区域范围相对较小。
Based on the high resolution Cross-Calibrated, Multi-Platform (CCMP) wind data from 1988 to 2009, the characteristics of annual average wind power density and the long-term trend of the wind power density in the China Sea and adjacent waters are analyzed to provide reference for the development of wind energy resources. Results show that:(1) the high value area of the wind power density mainly distributes in the Ryukyu Islands-Taiwan Island-southeast of the Indo-China Peninsula, northeast-southwest to zonal distribution, with an annual value greater than 450 W/m2. The annual average wind power is within 200 W/m2 in the Bohai Sea, Bohai Strait, north of the Yellow Sea, 200~350 W/m2 in the middle-south Yellow Sea, above 300 W/m2 in most of the East China Sea, above 200 W/m2 to the north of 5° N in the South China Sea. (2) Over the last 22 years, the annual average wind power density increases gradually with a rate of 4.1637 W/(m2·yr). (3) Most of the China Sea wind power density exhibit an obvious increasing trend, only some small areas have no significant changing trend. There are obvious regional differences in the increasing trend of wind power density. (4) The increasing trend of the wind power density also exhibits significant seasonal differences. The increasing trend is strongest in winter, showed an increasing trend of regional widest range, followed by spring, summer and autumn showed significant incremental area is relatively small.
参考文献:
[1] Zheng C W, Pan J, Li J X. Assessing the China sea wind energyand wave energy resources from 1988 to 2009[J]. OceanEngineering, 2013, 65:39-48.
[2] 孙稚权, 项杰, 管玉平. 基于ERA-interim资料中国近海风能资源时空分布[J]. 海洋预报, 2016, 33(3):50-56.
[3] 郑崇伟. 南海波浪能资源与其他清洁能源的优缺点比较研究[J].亚热带资源与环境学报, 2011, 6(3):76-81.
[4] 黄世成, 姜爱军, 刘聪, 等. 江苏省风能资源重新估算与分布研究[J]. 气象科学, 2007, 27(4):407-412.
[5] 郑崇伟, 李崇银. 中国南海岛礁建设:风力发电、海浪发电[J]. 中国海洋大学学报, 2015, 45(9):7-14.
[6] 周荣卫, 何晓风, 朱蓉, 等. 中国近海风能资源开发潜力数值模拟[J]. 资源科学, 2010, 32(8):1434-1443.
[7] Zheng C W, Zhuang H, Li X, et al. Wind energy and wave energyresources assessment in the East China Sea and South China Sea[J]. Science China Technological Sciences, 2012, 55(1):163-173.
[8] Atlas R, Hoffman R N, Ardizzone J, et al. A cross-calibrated,multiplatform ocean surface wind velocity product formeteorological and oceanographic applications[J]. Bulletin of theAmerican Meteorological Society, 2011, 92(2):157-174.
[9] 郑崇伟, 游小宝, 潘静, 等. 钓鱼岛、黄岩岛海域风能及波浪能开发环境分析[J]. 海洋预报, 2014, 31(1):49-57.
[10] 李正泉, 肖晶晶, 马浩, 等. 中国海表面风统计降尺度模型研究[J]. 海洋预报, 2016, 33(4):71-79.
[11] 姚琪, 郑崇伟, 苏勤, 等. 基于WAVEWATCH-Ⅲ模式的一次冷空气过程海浪场模拟研究[J]. 海洋预报, 2013, 30(2):49-54.
[12] Kozai K, Ohsawa T, Takahashi R, et al. Evaluation method foroffshore wind energy resources using scatterometer and weibullparameters[J]. Journal of Energy and Power Engineering, 2012, 6:1772-1778.
[13] 刘春霞, 何溪澄. QuikSCAT散射计矢量风统计特征及南海大风遥感分析[J]. 热带气象学报, 2003, 19(S1):107-117.
[14] Young I R, Zieger S, Babanin A V. Global trends in wind speedand wave height[J]. Science, 2011, 332(6028):451-455.
[15] Zheng C W, Li C Y. Variation of the wave energy and significantwave height in the China Sea and adjacent waters[J]. Renewableand Sustainable Energy Reviews, 2015, 43:381-387.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn