首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
赤道海洋Kelvin波对外强迫风场的响应
作者:陈光泽1  卢姁2 3  张铭3 
单位:1. 解放军61428部队, 北京 100072;
2. 解放军61741部队, 北京 100094;
3. 解放军理工大学气象海洋学院大气环流与短期气候预测实验室, 江苏 南京 211101
关键词:热带大洋 Kelvin波 强迫风场 响应 解析解 
分类号:P731.2
出版年·卷·期(页码):2017·34·第五期(16-26)
摘要:
采用无界理想海洋线性扰动模型,对赤道海洋Kelvin波在纬向风场异常强迫下的响应即强迫赤道海洋Kelvin波的异常做了解析求解,主要结果如下:该强迫赤道海洋Kelvin波的频率、波长和波速都与外强迫风场的相同,在赤道纬向流振幅最大并随纬度增加衰减,该风场越强,该强迫赤道海洋Kelvin波也越强,两者呈正比关系。当该风场频率和范围确定后,则该强迫赤道海洋Kelvin波被限制在一定平均水深范围内;该风场的频率越高、纬向波长越长、随纬度增加衰减越小,则该水深就越大。在所取参数下,该风场异常与该强迫赤道海洋Kelvin波流场异常的位相基本相同。在西风强迫下有东向流,反之亦然;强迫赤道海洋Kelvin波的流场与位势场则完全同位相,东向流对应于正位势,反之亦然,这也是经典Kelvin波的配置。该强迫赤道海洋Kelvin波与经典Kelvin波的不同在于:前者是频散的强迫波动,并被限制在一定水深中;后者是自由波动。将该强迫Kelvin波的解析解与热带印度洋和太平洋的实况以及诊断进行对比后知,两者总体看来一致,实际热带大洋中该强迫赤道海洋Kelvin波应确实存在。
Based on the unbounded ideal ocean linear perturbation model, we achieved the analytical solution of anomalous forced Kelvin wave in the equatorial ocean, which was the response of the equatorial ocean Kelvin wave to the anomalies of the forcing zonal wind. The main results were as follows:the frequency, wave-length, and wave celerity of this forced Kelvin wave were the same as the external forcing wind field. The amplitude of zonal flow peaked at the equator and decayed along the meridionality. When the wind field was stronger, the forced Kelvin wave was also stronger. If the frequency and coverage of the wind field were determined, the forced Kelvin wave was limited to a certain average depth. The higher the frequency of the wind field, the longer the zonal wavelength, the smaller the meridional attenuation, then the greater the depth of the water. When the parameter was chosen, the phase of the anomalous wind field and the flow field about the anomalous forced Kelvin wave was almost the same. The forcing of the west wind would cause eastward flow, and vice versa. The phase of the flow field about forced Kelvin wave and the potential field was completely the same. The eastward flow was corresponding to the positive potential, and vice versa, which was the configuration of the classic Kelvin wave. The difference of this Kelvin wave and the classic Kelvin wave was:the former was the dispersive forced fluctuation, which was limited to a certain depth; while the latter was the non-dispersive free fluctuation, whose wavelength, oscillation frequency and the depth of the water were independently set. The analytical solution of the forced Kelvin wave was consistent with the actual and diagnostic analysis of the tropical Indian Ocean and the Pacific Ocean. The forced Kelvin wave should do exist in the actual equatorial ocean.
参考文献:
[1] Matsuno T. Quasi-geostrophic motions in the Equatorial Area[J].Journal of the Meteorological Society of Japan Series Ⅱ, 1966, 44(1):25-43.
[2] Kuo H L. Long-term oscillations in the coupled atmosphere-oceansystem and El Niño phenomenon[J]. Journal of Climate, 1989, 2(12):1421-1437.
[3] Lian T, Chen D K, Tang Y M, et al. Effects of westerly wind burstson El Niño:a new perspective[J]. Geophysical Research Letters,2014, 41(10):3522-3527.
[4] Hirst A C. Slow instabilities in Tropical Ocean Basin-global atmosphere models[J]. Journal of the Atmospheric Sciences, 1988, 45(5):830-852.
[5] Yamagata T, Masumoto Y. A simple ocean-atmosphere coupled model for the origin of a warm El Niño southern Oscillation event[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1989, 329(1604):225-236.
[6] Zheng F, Zhu J. Observed splitting eastbound propagation of subsurface warm water over the equatorial Pacific in early 2014[J].Science Bulletin, 2015, 60(4):477-482.
[7] 张东凌, 曾庆存. 5月热带印度洋大气大洋耦合环流的统计动力分析[J]. 中国科学D辑:地球科学, 2007, 37(12):1693-1699.
[8] 卢姁, 张东凌. 热带太平洋10月份海气联合复EOF分析[J]. 海洋通报, 2009, 28(5):54-63.
[9] Mosquera-Vásquez K, Dewitte B, Illig S. The Central Pacific ElNiño intraseasonal Kelvin wave[J]. Journal of GeophysicalResearch:Oceans, 2014, 119(10):6605-6621.
[10] Iskandar I, Mardiansyah W, Setiabudidaya D, et al. Equatorialoceanic waves and the evolution of 2007 positive Indian OceanDipole[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2014,25(6):847-856.
[11] Roundy P E, Kiladis G N. Observed relationships betweenoceanic Kelvin waves and atmospheric forcing[J] Journal ofClimate, 2006, 19(20):5253-5272.
[12] 伍荣生. 大气动力学[M]. 2版. 北京:高等教育出版社, 2002:256-269.
[13] 张永垂, 路凯程, 张铭. 正压准平衡海洋模型及其解Ⅰ:中纬度大尺度风场强迫情况[J]. 气象科学, 2011, 31(1):11-16.
[14] 张铭. 正压涡旋不稳定问题的研究[J]. 大气科学, 1995, 19(6):677-686.
[15] 张铭, 张立凤. 球面正压大气的波谱分析[J]. 水动力学研究与进展, 2006, 21(1):130-138.
[16] 李崇银, 潘静, 宋洁. MJO研究新进展[J]. 大气科学, 2013, 37(2):229-252.
[17] 于毅. 热带西太平洋大气季节内振荡与El Niño关系研究[D]. 青岛:中国海洋大学, 2010.
[18] Liu T, Chen C C, Milo L. Accurate standard cell characterizationand statistical timing analysis using multivariate adaptiveregression splines[C]//IEEE. International Symposium onQuality Electronic Design (ISQEP), 2015:272-279.
[19] 宣莉莉, 邱云, 许金电, 等. 热带东印度洋表层环流季节变化特征研究[J]. 热带海洋学报, 2014, 33(1):26-35.
[20] Han W Q, McCreary Jr J P, Anderson D L T, et al. Dynamics ofthe eastern surface jets in the Equatorial Indian Ocean[J]. Journalof Physical Oceanography, 1999, 29(9):2191-2209.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn