首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
不同时间频次的外强迫对全球大洋海温模拟的影响
作者:史珍  李响  刘娜 
单位:国家海洋环境预报中心 国家海洋局海洋灾害预报技术研究重点实验室, 北京 100081
关键词:MOM4 时间频次 外强迫 海温 
分类号:P731.11
出版年·卷·期(页码):2016·33·第六期(1-9)
摘要:
研究了不同时间频次外强迫对全球海洋环流模式MOM4的海温模拟的影响,并分析了其影响海温模拟的物理机制。结果表明:由于时间平均产生的不同时间频次的外强迫具有相同的气候态,但是其强度差异较大。采用不同时间频次的外强迫均能较好的重现全球海温的大尺度时空分布特征,且对海温异常的模拟跟观测较为接近,但是不同时间频次外强迫对全球海温平均值的模拟偏差较大,其中逐6 h的外强迫模拟的全球平均海温相对于逐月外强迫模拟的全球平均海温改进了0.74℃。高频强迫模拟的海温更加接近观测,其对全球海洋起着冷却的作用。这种冷却作用在中高纬度海域主要通过加强垂直混合导致,而在低纬海域可能是平流过程及热通量导致。
In this study, heat fluxes and wind stress with different temporal resolution are compared, and they are used as the upper boundary condition for a global oceanic general circulation model MOM4. Because of the time average, three experiments (CFSR_6h, CFSR_Day, CFSR_Mon) have the same climate characteristics, while differ in magnitude. The comparison between the simulations and observations reveals that the model SSTs have similar seasonal to interannual variability as the observed SST. But the magnitude of SSTs differ from observed SST within 1℃, the global mean SST in CFSR_6h is 0.74℃ lower than in CFSR_Mon. In general, ocean temperature simulated with high frequency forcing is more similar with observation. The effect of high frequency forcing can cool the global ocean. In the mid-latitude and high-latitude area, high frequency forcing enhances vertical mixing to cool the ocean. But in the low-latitude area, the horizontal advection and heat flux may play more important roles to cool the ocean.
参考文献:
[1] Chen D K, Wang D P. Simulating the Time-Variable Coastal Upwelling During CODE 2[J]. Journal of Marine Research, 1990, 48(2):335-358.
[2] Large W G, Holland W R, Evans J C. Quasi-geostrophic Ocean Response to Real Wind Forcing:The Effects of Temporal Smoothing[J]. Journal of Physical Oceanography, 1991, 21(7):998-1017.
[3] Chen D K, Rothstein L M, Busalacchi A J. A Hybrid Vertical Mixing Scheme and Its Application to Tropical Ocean Models[J]. Journal of Physical Oceanography, 1994, 24(10):2156-2179.
[4] Chen D K, Liu W T, Zebiak S E, et al. Sensitivity of the tropical Pacific Ocean simulation to the temporal and spatial resolution of wind forcing[J]. Journal of Geophysical Research:Oceans, 1999, 104(C5):11261-11271.
[5] Sui C H, Li X F, Rienecker M M, et al. The Role of Daily Surface Forcing in the Upper Ocean over the Tropical Pacific:A Numerical Study[J]. Journal of Climate, 2003, 16(4):756-766.
[6] Kara A B, Hurlburt H E, Wallcraft A J, et al. Black Sea Mixed Layer Sensitivity to Various Wind and Thermal Forcing Products on Climatological Time Scales[J]. Journal of Climate, 2005, 18(24):5266-5293.
[7] Casella E, Molcard A, Provenzale A. Mesoscale vortices in the Ligurian Sea and their effect on coastal upwelling processes[J]. Journal of Marine Systems, 2011, 88(1):12-19.
[8] Cardona Y, Bracco A. Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea[J]. Ocean Modelling, 2012, 42:1-15.
[9] Lee T, Liu W T. Effects of High-Frequency Wind Sampling on Simulated Mixed Layer Depth and Upper Ocean Temperature[J]. Journal of Geophysical Research:Oceans, 2005, 110(C5):C05002.
[10] Griffies S M, Harrison M J, Pacanowski RC, et al. A technical guide to MOM4[J]. GFDL Ocean Group Technical Report, 2004, 5:371.
[11] Saha S, Moorthi S, Pan H L, et al. NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010[R]. Boulder, CO:Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2010.
[12] Carton J A, Chepurin G, Cao X H. A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950-95. Part II:Results[J]. Journal of Physical Oceanography, 2000, 30(2):311-326.
[13] 黄荣辉. ENSO及热带海-气相互作用动力学研究的新进展[J]. 大气科学, 1990, 14(2):234-242.
[14] 李晓燕, 翟盘茂. ENSO事件指数与指标研究[J]. 气象学报, 2000, 58(1):102-109.
[15] Saji N H, Goswami B N, Vinayachandran P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6751):360-363.
[16] Kara A B, Rochford P A, Hurlburt H E. An Optimal Definition for Ocean Mixed Layer Depth[J]. Journal of Geophysical Research:Oceans, 2000, 105(C7):16803-16821.
[17] Thomson R E, Fine I V. Estimating Mixed Layer Depth from Oceanic Profile Data[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(2):319-329.
[18] 范聪慧. 多因素对海洋上混合层深度影响的数值模拟[D]. 北京:中国科学院研究生院(海洋研究所), 2007.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn