首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
无结构网格二维海洋模式的正压梯度力算法改进
作者:陈昞睿 
单位:国家海洋局东海预报中心, 上海 201206
关键词:无结构网格 海洋模式 解析解 正压梯度力 稳定性 
分类号:P731
出版年·卷·期(页码):2016·33·第一期(27-36)
摘要:
基于一套自主研制的无结构网格二维河口海洋数值模式A2D,在大圆湖理想模型下,通过与解析解进行比较分析,采用不同架构配置,改进设计正压梯度力计算方法。改进后的算法中引入了从算架构的配置,以配合主算架构,得到更佳的稳定性。通过水位场平面分布与单点过程线可以发现,三组试验的算法均获得了较好的精度和比原算法更好的稳定性,其中TSNS配置算法(中心点计算水位、边中点计算流速的主算架构,配合节点计算水位、边中点计算流速的从算架构)由于其主算架构更接近结构网格下的C网格,在守恒性、移动潮滩边界处理等方面具有一定优势和便利性,有利于在实际海洋中的计算。将TSNS配置算法在江浙沿海进行试算,水位验证结果与实测基本符合,与原A2D模式计算水位之间无显著差异。TSNS算法在稳定性方面的改进,有助于提升模式升级为三维后的稳定性,为今后模式成功升级为三维打下基础。
Based on A2D, an independently developed unstructured grid two-dimensional ocean model, and by comparison with analytical solution under an ideal Model Great Lake, the algorithm of barotropic force was improved via employing different computational designs. In the improved algorithm, an assistant design was introduced to cooperate with the major design in order to acquire better stability. Results of elevation field and site time series showed that algorithms of three experiments got satisfactory accuracy and better stability. The TSNS algorithm was among the three, in which the major design solves elevation at centroid and velocity at mid-point of side, and the assistant design solves elevation at node and velocity at mid-point of side. Due to the similarity of its major design to C-grid design in a structured grid, the TSNS algorithm had advantages in conservation and movable tide-flat boundary treatments, which made the algorithm easier to apply for real ocean simulations. The TSNS algorithm was applied to the simulation in real sea near Jiangsu and Zhejiang. The simulated elevation had a good agreement with observed data, and was similar with results from the original A2D model. The improvement in stability will help TSNS algorithm get better stability in three-dimensional upgraded version, and will be the foundation of a successful three-dimensional version in future.
参考文献:
[1] Blumberg A F. A Primer for ECOM-si[R]. Technical Report of HydroQual, Mahwah, New Jersey, 1994.
[2] Blumberg A F, Mellor G L. A Description of a Three-Dimensional Coastal Ocean Circulation Model[M]. Washington, DC: American Geophysical Union, 1987.
[3] Casulli V. Semi-implicit Finite Difference Methods for the Two-dimensional Shallow Water Equations[J]. Journal of Computational Physics, 1990, 86(1): 56-74.
[4] Casulli V. A Semi-implicit Finite Difference Method for Non-hydrostatic, Free-surface Flows[J]. International Journal for Numerical Methods in Fluids, 1999, 30(4): 425-440.
[5] Casulli V, Walters R A. An Unstructured Grid, Three-dimensional Model based on the Shallow Water Equations[J]. International Journal for Numerical Methods in Fluids, 2000, 32(3): 331-348.
[6] Ham D A, Kramer S C, Stelling G S, et al. The Symmetry and Stability of Unstructured Mesh C-grid Shallow Water Models Under the Influence of Coriolis[J]. Ocean Modelling, 2007, 16 (1-2): 47-60.
[7] Zhang Y L, Baptista A M, Myers III E P. A Cross-scale Model for 3D Baroclinic Circulation in Estuary-plume-shelf Systems: I. Formulation and Skill Assessment[J]. Continental Shelf Research, 2004, 24(18): 2187-2214.
[8] Fringer O B, Gerritsen M, Street R L. An Unstructured-grid, Finite-volume, Nonhydrostatic, Parallel Coastal Ocean Simulator[J]. Ocean Modelling, 2006, 14(3-4): 139-173.
[9] DHI. MIKE 21 & MIKE 3 Flow Model FM Hydrodynamic and Transport Module Scientific Documentation[R]. Copenhagen: DHI, 2011.
[10] Chen C S, Liu H D, Beardsley R C. An Unstructured Grid, Finite-volume, Three-dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159-186.
[11] Chen C S, Beardsley R C, Cowles G. An Unstructured Grid, Finite-volume Coastal Ocean Model: FVCOM User Manual[M]. New Bedford, Mass: SMAST/UMASSD, 2006.
[12] Luettich R, Westerink J. Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX[R]. 2004.
[13] 顾峰峰, 倪汉根, 戚定满, 等. AUSM格式在二维浅水方程求解 中的应用[J]. 水科学进展, 2008, 19(5): 624-629.
[14] 赵棣华, 戚晨, 庾维德, 等. 平面二维水流-水质有限体积法及黎 曼近似解模型[J]. 水科学进展, 2000, 11(4): 368-374.
[15] 陈昞睿, 朱建荣, 吴辉, 等. 无结构网格二维河口海岸水动力数 值模式的建立及其应用[J]. 海洋学报, 2010, 32(2): 31-39.
[16] 陈昞睿. 无结构网格二维河口海洋数值模式的研制[D]. 上海: 华东师范大学, 2011.
[17] Arakawa A, Lamb V R. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model[J]. Methods of Computational Physics, 1977, 17: 173-265.
[18] Kleptsova O, Pietrzak J D, Stelling G S. On the Accurate and Stable Reconstruction of Tangential Velocities in C-grid Ocean Models[J]. Ocean Modelling, 2009, 28(1-3): 118-126.
[19] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出 版社, 1999.
[20] 朱建荣. 海洋数值计算方法和数值模式[M]. 北京: 海洋出版社, 2003.
[21] 朱建荣, 杨陇慧, 朱首贤. 预估修正法对河口海岸海洋模式稳定 性的提高[J]. 海洋与湖沼, 2002, 33(1): 15-22.
[22] 朱建荣, 朱首贤. ECOM模式的改进及在长江河口、杭州湾及邻 近海区的应用[J]. 海洋与湖沼, 2003, 34(4): 364-374.
[23] Chen B R, Zhu J R, Li L. Accelerating 3D Ocean Model Development by using GPU Computing[M]//Deng W. Future Control and Automation: Proceedings of the 2nd International Conference on Future Control and Automation. Berlin Heidelberg: Springer, 2012, 1: 37-43.
[24] Csanady G T. Motions in a Model Great Lake Due to a Suddenly Imposed Wind[J]. Journal of Geophysical Research, 1968, 73(20): 6435-6447.
[25] Birchfield G E. Response of A Circular Model Great Lake to A Suddenly Imposed Wind Stress[J]. Journal of Geophysical Research, 1969, 74(23): 5547-5554.
[26] Large W G, Pond S. Open Ocean Momentum Flux Measurements in Moderate to Strong Winds [J]. Journal of Physical Oceanography, 1981, 11(3): 324-406.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn