首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
裂流危险性的数值预报方法及其在三亚大东海浴场的应用
作者:杨怀玮1 2  原野1 3  高义1  邢闯1  高志一1 3 
单位:1. 国家海洋环境预报中心, 北京 100081;
2. 厦门大学, 福建 厦门 361102;
3. 自然资源部海洋灾害预报技术研究重点实验室, 北京 100081
关键词:裂流 预报 数值模拟 裂流危险性 
分类号:P731.35
出版年·卷·期(页码):2022·39·第二期(59-69)
摘要:
在简要综述裂流观测和预报进展的基础上,提出了一种裂流危险性的数值预报流程,并以三亚大东海浴场为例进行了裂流危险性后报试验。采用GPU并行加速的全非线性Boussinesq波动模型(FUNWAVE-GPU),在大东海浴场建立了水平分辨率为1 m的波动及波生流数值模型。通过施加不同潮位、入射波高、波周期和入射角度,考察裂流的产生和时空分布特征,结果发现入射波高及入射波周期的增大会使裂流空间尺度和流速明显增加,低潮位时更易产生裂流。将国家海洋环境预报中心提供的三亚外海波浪谱作为FUNWAVE-GPU的开边界条件,以离岸流强度及其持续时间作为裂流危险性等级的判定标准,绘制了国内首幅基于数值预报的裂流危险性等级图。
Based on a brief review on the progress of the observation and forecasting of rip current, this paper proposes a numerical forecasting procedure of rip current hazard, and takes the Dadonghai Beach, Sanya as an example to conduct the rip current hindcast experiment. Using the FUlly Nonlinear Boussinesq WAVE model accelerated by GPU (FUNWAVE-GPU), a numerical model of wave-driven currents with the resolution of 1 meter is established in this study. The temporal and spatial distributions of rip currents are researched by imposing different tide levels, incident wave heights, periods and angles. It is found that the increase of incident wave height and periods would significantly enhance rip current speed and extend offshore-directed rip scales. In addition, the rip currents are more likely to occur at low tides. Using the wave spectrum off Sanya sea area provided by the National Marine Environmental Forecasting Center as the open boundary condition of FUNWAVE-GPU, and taking the intensity and duration as the criteria of the levels of rip current hazard, a hazard level chart of rip current is drafted for the first time in China based on numerical prediction.
参考文献:
[1] Dalrymple R A, MacMahan J H, Reniers A J H M, et al. Rip currents[J]. Annual Review of Fluid Mechanics, 2011, 43: 551-581.
[2] 王玉海, 汤立群, 郭传胜, 等. 近岸地区裂流研究刍议[C]//第十八届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2017: 185-190. Wang Y H, Tang L Q, Guo C S, et al. A brief talk on the study of rip current in nearshore areas[C]//Proceedings of the Collection of Papers of the 18th China Ocean (Shore) Engineering Symposium (Part 1). Beijing: China Ocean Press, 2017: 185-190.
[3] Shepard F P, Emery K O, La Fond E C. Rip currents: a process of geological importance[J]. The Journal of Geology, 1941, 49(4): 337-369.
[4] 董碧璇, 冯卫兵, 冯曦. 国内裂流研究进展[J]. 海洋科学, 2020, 44(1): 165-174. Dong B X, Feng W B, Feng X. Progress of rip current research in China[J]. Marine Sciences, 2020, 44(1): 165-174.
[5] Brander R W. Field observations on the morphodynamic evolution of a low-energy rip current system[J]. Marine Geology, 1999, 157(3-4): 199-217.
[6] Drozdzewski D, Shaw W, Dominey-Howes D, et al. Surveying rip current survivors: preliminary insights into the experiences of being caught in rip currents[J]. Natural Hazards and Earth System Sciences, 2012, 12(4): 1201-1211.
[7] Brander R W, Bradstreet A, Sherker S, et al. Responses of swimmers caught in rip currents: perspectives on mitigating the global rip current hazard[J]. International Journal of Aquatic Research and Education, 2011, 5(4): 11.
[8] Brewster B C, Gould R E, Brander R W. Estimations of rip current rescues and drowning in the United States[J]. Natural Hazards and Earth System Sciences, 2019, 19(2): 389-397.
[9] Short A D, Masselink G. Embayed and structurally controlled beaches[M]//Short A D. Handbook of Beach and Shoreface Morphodynamics. New York: Wiley, 1999.
[10] Short A D. Australian rip systems-friend or foe? [J]. Journal of Coastal Research, 2007(S50): 7-11.
[11] Sherker S, Brander R, Finch C, et al. Why Australia needs an effective national campaign to reduce coastal drowning[J]. Journal of Science and Medicine in Sport, 2008, 11(2): 81-83.
[12] Kim I C, Lee J L, Lee J Y. Verification of rip current simulation using a two-dimensional predictive model, HAECUM[J]. Journal of Coastal Research, 2013, 65(S1): 726-730.
[13] Kumar S V V A, Prasad K V S R. Rip current-related fatalities in India: a new predictive risk scale for forecasting rip currents[J]. Natural Hazards, 2014, 70(1): 313-335.
[14] da Fontoura Klein A H, Santana G G, Diehl F L, et al. Analysis of hazards associated with sea bathing: results of five years work in oceanic beaches of Santa catarina state, southern brazil[J]. Journal of Coastal Research, 2003, 35(19): 107-116.
[15] Brander R W, Short A D. Morphodynamics of a large-scale rip current system at Muriwai Beach, New Zealand[J]. Marine Geology, 2000, 165(1-4): 27-39.
[16] Kirby J T. Chapter 1 Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents[J]. Elsevier Oceanography Series, 2003, 67: 1-41.
[17] Chen Q, Dalrymple R A, Kirby J T, et al. Boussinesq modeling of a rip current system[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20617-20637.
[18] Lushine J B. A study of rip current drownings and related weather factors[J]. National Weather Digest, 1991, 16: 13-19.
[19] Lascody R L. East central Florida rip current program[J]. National Weather Digest, 1998, 22(2): 25-30.
[20] Engle J, MacMahan J, Thieke R J, et al. Formulation of a rip current predictive index using rescue data[C]//Proceedings of National Conference on Beach Preservation Technology. Biloxi: FSBPA, 2002: 23-25.
[21] Wright L D, Short A D, Green M O. Short-term changes in the morphodynamic states of beaches and surf zones: an empirical predictive model[J]. Marine Geology, 1985, 62(3-4): 339-364.
[22] 李志强. 基于地形动力学的华南海滩裂流风险研究[J]. 热带海洋学报, 2015, 34(1): 8-14. Li Z Q. Study on the rip current hazard of South China beaches based on beach morphodynamics[J]. Journal of Tropical Oceanography, 2015, 34(1): 8-14.
[23] 李志强, 朱雅敏. 基于地形动力学的海滩裂流安全性评价—— 以三亚大东海为例[J]. 热带地理, 2015, 35(1): 96-102. Li Z Q, Zhu Y M. Beach safety evaluation based on rip current morphodynamic: a case study of Dadonghai of Sanya, China[J]. Tropical Geography, 2015, 35(1): 96-102.
[24] 李志强, 陈杏文. 湛江东海岛裂流风险评价[J]. 海洋开发与管理, 2016, 33(S2): 73-78. Li Z Q, Chen X W. Rip current risk at the beach of Donghai Island, Zhanjiang, China[J]. Ocean Development and Management, 2016, 33(S2): 73-78.
[25] 彭石, 邹志利. 海岸裂流的浮子示踪法实验测量[J]. 水动力学研究与进展A辑, 2011, 26(6): 645-651. Peng S, Zou Z L. Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics, 2011, 26(6): 645-651.
[26] 张尧, 刘强, 刘旭楠, 等. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857. Zhang Y, Liu Q, Liu X N, et al. Variability of rip currents induced by rhythmic sandbars[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1849-1857.
[27] 吴瑞. 大东海生态旅游现状及环境保护建议[J]. 热带农业工程, 2017, 41(3): 26-28. Wu R. Situation of ecological tourism in Dadonghai and suggestions of environmental protection[J]. Tropical Agricultural Engineering, 2017, 41(3): 26-28.
[28] 苏国宾, 陈沈良, 徐丛亮, 等. 基于GF-1影像的黄河口潮滩高程定量反演[J]. 海洋地质前沿, 2018, 34(11): 1-9. Su G B, Chen S L, Xu C L, et al. Quantitative retrival of tidal flat elevation with GF-1 images in the yellow river mouth[J]. Marine Geology Frontiers, 2018, 34(11): 1-9.
[29] Kirby J T, Wei G, Chen Q, et al. Funwave 1.0. Fully nonlinear boussinesq wave model. Documentation and user's manual[R]. University of Delaware, 1998.
[30] Shi F Y, Kirby J T, Harris J C, et al. A high-order adaptive timestepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43-44: 36-51.
[31] Yuan Y, Shi F Y, Kirby J T, et al. FUNWAVE-GPU: multiple-GPU acceleration of a boussinesq-type wave model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12: e2019MS 001957.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn