首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
两个相似路径台风途经鲁西南时降水差异的成因分析
作者:李瑞芬1 2  郭卫华1 2  丛春华1 3  袁月1 2 
单位:1. 山东省气象防灾减灾重点实验室, 山东 济南 250031;
2. 山东省济宁市气象局, 山东 济宁 272000;
3. 山东省气象台, 山东 济南 250031
关键词:相似路径台风 降水差异 非地转湿Q矢量 垂直螺旋度 湿位涡 
分类号:P444
出版年·卷·期(页码):2022·39·第二期(40-49)
摘要:
基于常规观测资料和FNL再分析资料,对比分析了两个相似路径台风“摩羯”(1814)和台风“温比亚”(1818)在途经鲁西南地区时降水分布差异的成因。结果表明:环流形势的差异是导致两个台风降水分布差异的主要原因,500 hPa上台风“摩羯”处于均压场中,降水以台风本体降水为主,位于台风顶部,而台风“温比亚”并入高空槽中,降水以锋面降水为主,位于台风移向的右前侧。两个台风的水汽源地不同,水汽辐合的位置也存在差异,500 hPa正涡度平流和925 hPa切变线位置对降水落区具有较好的指示作用。台风“摩羯”的正压暖心结构和稍弱的环境垂直风切变比具有斜压锋生结构和较强环境垂直风切变的台风“温比亚”更有利于在台风附近形成降水。对两个台风进行中尺度诊断分析发现,非地转湿Q矢量和垂直螺旋度可以很好地诊断降水落区;湿位涡显示,湿正压项<0仅是降水发生的必要条件,并不能决定降水发生的位置,湿斜压项更能体现降水发生的位置和强度。
Based on the conventional observation data and FNL reanalysis data, the causes of the precipitation difference between typhoon "Yagi" (1814) and "Rumbia" (1818) passing through southwest of Shandong Province with similar tracks are analyzed in this paper. The results show that the difference in circulation pattern is the main reason for the precipitation difference between the two typhoons. Typhoon "Yagi" is in the equal pressure field on 500 hPa, and the precipitation is mainly from the typhoon itself, which is located at the top of the typhoon. Typhoon "Rumbia" is merged into the upper trough, and the precipitation is mainly frontal precipitation, which is located on the right-front side of the typhoon direction. Moreover, the water vapor sources as well as the locations of vapor convergence of the two typhoons are different. The locations of positive vorticity advection on 500 hPa and the wind shear on 925 hPa have a good indication of the rainfall area, and the barotropic structure with warm center and weaker environmental vertical wind shear of typhoon "Yagi" is more favorable for the formation of precipitation nearby compared to typhoon "Rumbia" with stronger environmental vertical wind shear and baroclinic structure induced by front. The mesoscale diagnosis analysis of the two typhoons shows that the non-geostrophic wet Q-vector and the vertical helicity can be used to diagnose the rainfall area. In addition, the moist potential vortex shows that the wet barotropic term less than 0 is only a necessary condition for the occurrence of precipitation and not a factor determining the location of rainfall, while the wet baroclinic term is a better indicator for the location and intensity of rainfall.
参考文献:
[1] 陈联寿, 孟智勇, 丛春华. 台风暴雨落区研究综述[J]. 海洋气象学报, 2017, 37(4): 1-7. Chen L S, Meng Z Y, Cong C H. An overview on the research of typhoon rainfall distribution[J]. Journal of Marine Meteorology, 2017, 37(4): 1-7.
[2] 雷小途, 陈联寿. 热带气旋与中纬度环流系统相互作用的研究进展[J]. 热带气象学报, 2001, 17(4): 452-461. Lei X T, Chen L S. An overview on the interaction between tropical cyclone and mid-latitude weather systems[J]. Journal of Tropical Meteorology, 2001, 17(4): 452-461.
[3] 寿绍文. 中国暴雨的天气学研究进展[J]. 暴雨灾害, 2019, 38(5): 450-463. Shou S W. Progress of synoptic studies for heavy rain in China[J]. Torrential Rain and Disasters, 2019, 38(5): 450-463.
[4] 任福民, 杨慧. 1949年以来我国台风暴雨及其预报研究回顾与展望[J]. 暴雨灾害, 2019, 38(5): 526-540. Ren F M, Yang H. An overview of advances in typhoon rainfall and its forecasting researches in China during the past 70 years and future prospects[J]. Torrential Rain and Disasters, 2019, 38(5): 526- 540.
[5] 陈剑, 孔玉寿. 卫星云图资料在台风路径相似预报中的应用[J]. 海洋预报, 2004, 21(3): 22-28. Chen J, Kong Y S. The application of satellite nephogram on analog forecast for typhoon track[J]. Marine Forecasts, 2004, 21(3): 22-28.
[6] 范爱芬, 李秀莉, 董加斌. 三个路径相似降雨特征不同的热带气旋分析[J]. 气象, 2004, 30(5): 33-37. Fan A F, Li X L, Dong J B. Analysis of three tropical cyclones with similar tracks but different precipitation feature[J]. Meteorological Monthly, 2004, 30(5): 33-37.
[7] 梁红丽, 程正泉. 2014年两次相似路径影响云南台风降水差异成因分析[J]. 气象, 2017, 43(11): 1339-1353. Liang H L, Cheng Z Q. Cause analysis of precipitation difference between two typhoons influencing Yunnan along similar tracks in 2014[J]. Meteorological Monthly, 2017, 43(11): 1339-1353.
[8] 卜松, 李英. 华东登陆热带气旋降水不同分布的对比分析[J]. 大气科学, 2020, 44(1): 27-38. Bu S, Li Y. Comparative analysis of precipitation distributions of tropical cyclones making landfall in East China[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(1): 27-38.
[9] 杨舒楠, 陈涛, 刘建勇. 两次台风暴雨冷空气影响对比分析[J]. 气象科技, 2018, 46(2): 324-335. Yang S N, Chen T, Liu J Y. Comparative analysis of TC rainstorms induced by cold air intrusion of two TC cases[J]. Meteorological Science and Technology, 2018, 46(2): 324-335.
[10] 覃武, 赵金彪, 黄荣成, 等. 台风“山竹”登陆结构变化及造成广西强降水异常分布的成因分析[J]. 热带气象学报, 2019, 35(5): 587-595. Qin W, Zhao J B, Huang R C, et al. Cause analysis on the structural change of typhoon Mangkhut during its landing and the abnormal distribution of heavy precipitation in Guangxi[J]. Journal of Tropical Meteorology, 2019, 35(5): 587-595.
[11] 刘晓汝, 谢作威. 2019年超强台风“利奇马”引发浙江特大暴雨过程分析[J]. 气象科学, 2020, 40(1): 89-96. Liu X R, Xie Z W. Analysis of rainstorm caused by super typhoon "Lekima" in Zhejiang Province of 2019[J]. Journal of the Meteorological Sciences, 2020, 40(1): 89-96.
[12] 韩芙蓉, 鹿翔, 梁亮.“莫兰蒂”台风暴雨的湿Q矢量和垂直螺旋度分析[J]. 海洋预报, 2020, 37(1): 67-74. Han F R, Lu X, Liang L. Analysis of wet ageostrophic Q-vector and vertical helicity of rainstorm of typhoon "Meranti" [J]. Marine Forecasts, 2020, 37(1): 67-74.
[13] 陈有利, 钱燕珍, 潘灵杰, 等. 一次与台风相关联的浙江东北部暴雨成因及预报难点分析[J]. 干旱气象, 2018, 36(2): 272-281. Chen Y L, Qian Y Z, Pan L J, et al. Causes analysis of a heavy rainfall associated with typhoon and forecast difficulties in northeastern Zhejiang[J]. Journal of Arid Meteorology, 2018, 36(2): 272-281.
[14] 曹宗元, 陈淑琴, 刘飞, 等. 相似路径台风“天鹅”(1515)和“珊珊” (0613)降水差异分析[J]. 海洋预报, 2018, 35(3): 48-56. Cao Z Y, Chen S Q, Liu F, et al. Analysis on precipitation difference between the similar track typhoon "GONI" (1515) and "Shanshan" (0613)[J]. Marine Forecasts, 2018, 35(3): 48-56.
[15] Knaff J A, Seseske S A, DeMaria M, et al. On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU[J]. Monthly Weather Review, 2004, 132(10): 2503-2510.
[16] Chen S S, Knaff J A, Marks Jr F D. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM[J]. Monthly Weather Review, 2006, 134(11): 3190-3208.
[17] 张兴旺. 湿Q矢量表达式及其应用[J]. 气象, 1998, 24(8): 3-7. Zhang X W. An expression of the wet Q vector and application[J]. Meteorological Monthly, 1998, 24(8): 3-7.
[18] 岳彩军. Q矢量、螺旋度、位涡及位涡反演在台风暴雨研究中的应用进展[J]. 暴雨灾害, 2014, 33(3): 193-201. Yue C J. Progress in application study of Q vector, helicity, potential vorticity and its inversion to torrential rainfall associated with typhoon[J]. Torrential Rain and Disasters, 2014, 33(3): 193- 201.
[19] 吴国雄, 蔡雅萍, 唐晓菁. 湿位涡和倾斜涡度发展[J]. 气象学报, 1995, 53(4): 387-405. Wu G X, Cai Y P, Tang X J. Moist potential vorticity and slantwise vorticity development[J]. Acta Meteorologica Sinica, 1995, 53(4): 387-405.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn