首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
使用高分辨率海-气-浪耦合模式COAWST对“Megi”(2010)的一次模拟试验
作者:徐海波1  杜华栋1  项杰1  谭晓林1 2  操俊伟3 
单位:1. 国防科技大学气象海洋学院, 江苏 南京 211101;
2. 中国人民解放军第32137部队, 河北 张家口 075000;
3. 太原卫星发射中心, 山西 太原 030000
关键词:COAWST模式 海气浪耦合 台风预报 台风“megi” 
分类号:P457.8
出版年·卷·期(页码):2019·36·第二期(57-67)
摘要:
使用高分辨率COAWST海-气-浪耦合模式,进行了一次对超强台风Megi (2010)的模拟试验,分析了耦合模式下台风的发展过程和台风条件下海-气-浪之间的相互作用。通过对比分析,模式较好地模拟了此次台风过程,进一步分析发现海洋条件对台风强度有一定的影响;台风移动速度、风速的大小是影响海洋反馈程度的重要的因素。
This paper conducts a simulation experiment on super typhoon Meig in 2010, and analyzes its developing process and the interaction among ocean, atmosphere and ocean wave using the coupled oceanatmosphere-wave sediment-Transport(COAWST) modeling system. It is found that modeling system could well reproduce the typhoon process. Further analysis shows that ocean condition will influence typhoon track to a certain degree, and the typhoon moving speed and wind speed are important factors that affect the degree of ocean feedback.
参考文献:
[1] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京:科学出版社, 1979.
[2] 陈大可, 雷小途, 王伟, 等. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10):1077-1086.
[3] Sakaida F, Kawamura H, Toba Y. Sea surface cooling caused by typhoons in the Tohoku area in August 1989[J]. Journal of Geophysical Research:Oceans, 1998, 103(C1):1053-1065.
[4] Sutyrin G G, Khain A P. 1984. Effect of the ocean-atmosphere interaction on the intensity of a moving tropical cyclone[J]. Atmospheric and Oceanic Physics, 20:787-794.
[5] Clifford M, Horton C, Schmitz J. SWAFS:Shallow water analysis and forecast system[C]//Proceedings of OCEANS'94. Brest, France:IEEE, 1994, 3:Ⅲ/82-Ⅲ/87.
[6] Hodur R M. The naval research laboratory's coupled ocean/atmosphere mesoscale prediction system (COAMPS)[J]. Monthly Weather Review, 1997, 125(7):1414-1430.
[7] Bao J W, Wilczak J M, Choi J K, et al. Numerical simulations of air-sea interaction under high wind conditions using a coupled model:A study of hurricane development[J]. Monthly Weather Review, 2000, 128(7):2190-2210.
[8] Bender M A, Ginis I. Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model:Effects on hurricane intensity[J]. Monthly Weather Review, 2000, 128(4):917-946.
[9] Mogensen K S, Magnusson L, Bidlot J R. Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model[J]. Journal of Geophysical Research:Oceans, 2017, 122(5):4392-4412, doi:10.1002/2017JC012753.
[10] Warner J C, Armstrong B, He R Y, et al. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3):230-244.
[11] Warner J C, Geyer W R, Arango H G. Using a composite grid approach in a complex coastal domain to estimate estuarine residence time[J]. Computers & Geosciences, 2010, 36(7):921-935.
[12] 刘春霞, 齐义泉, 梁建茵. WRF与海浪模式耦合及其对台风的影响[C]//中国气象学会2005年年会论文集. 苏州:中国气象学会, 2005:2300-2307.
[13] 蒋小平, 刘春霞, 齐义泉. 利用一个海气耦合模式对台风Krovanh的模拟[J]. 大气科学, 2009, 33(1):99-108.
[14] 丁亚梅, 董克慧, 周林, 等. 大气-海浪耦合模式对台风"碧利斯" 的数值模拟[J]. 海洋预报, 2009, 26(2):15-26.
[15] 令聪婧, 刘磊, 何伟, 等. 一次台风过程对西北太平洋西边界流系源区影响的数值模拟研究[J]. 海洋预报, 2015, 32(5):24-34.
[16] 姜洪峰, 蒋小平, 杨斌, 等. 南海上层对台风响应的模拟研究[J]. 海洋预报, 2009, 26(1):29-35.
[17] Liu N, Ling T J, Wang H, et al. Numerical simulation of typhoon Muifa (2011) using a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system[J]. Journal of Ocean University of China, 2015, 14(2):199-209.
[18] Holthuijsen L H. Waves in oceanic and coastal waters[M]. Cambridge:Cambridge University Press, 2007.
[19] Longuet-Higgins M S, Stewart R W. Radiation stresses in water waves; A physical discussion, with applications[J]. Deep Sea Research and Oceanographic Abstracts, 1964, 11(4):529-562.
[20] Mellor G L. The depth-dependent current and wave interaction equations:A revision[J]. Journal of Physical Oceanography, 2008, 38(11):2587-2596.
[21] Charnock H. Wind stress on a water surface[J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(350):639-640.
[22] Taylor P K, Yelland M J. The dependence of sea surface roughness on the height and steepness of the waves[J]. Journal of Physical Oceanography, 2001, 31(2):572-590.
[23] Zambon J B, He R Y, Warner J C. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model[J]. Ocean Dynamics, 2014, 64(11):1535-1554.
[24] Perrie W, Zhang Y. A coupled atmosphere-ocean wave system for understanding air-sea fluxes[M]//Brebbia C A, Almorza D, López-Aguayo F. Coastal Engineering VI:Computer Modelling and Experimental Measurements of Seas and Coastal Regions. Ashurst, Southampton:WIT Press, 2003.
[25] Lin I I, Pun I F, Wu C C. Upper-ocean thermal structure and the western north pacific category 5 typhoons. Part Ⅱ:Dependence on translation speed[J]. Monthly Weather Review, 2009, 137(11):3744-3757.
[26] Weatherford C L, Gray W M. Typhoon structure as revealed by aircraft reconnaissance. Part I:Data analysis and climatology[J]. Monthly Weather Review, 1988, 116(5):1032-1043.
[27] Emanuel K A. The theory of hurricanes[J]. Annual Review of Fluid Mechanics, 1991, 23:179-196.
[28] Emanuel K A. Thermodynamic control of hurricane intensity[J]. Nature, 1999, 401(6754):665-669.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn