首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
三种典型路径下的台湾海峡台风浪特征研究
作者:陈剑桥 
单位:福建省海洋预报台, 福建 福州 350003
关键词:台风浪 台湾海峡 台湾岛 涌浪 海浪谱 主波向 风向 
分类号:P731.22
出版年·卷·期(页码):2018·35·第六期(1-12)
摘要:
以WRF风场驱动SWAN波浪模式,模拟分析了北路、中路、南路3种典型台风路径下,台湾海峡及周边海域的台风浪的特征。结果发现:(1)数值模拟与浮标实测情况基本一致,并模拟出台风浪场右半圆大于左半圆、前进象限以涌浪为主、主波方向辐射向前传播、台风的正后方向的主波向混乱等特征;(2)在中路和南路台风影响时,台湾海峡较早出现15 m/s的风速等值线,但是海峡内风场与台风风场被台湾岛地形分割致使海浪成长风区变短,而且远海涌浪无法传播到海峡内部,使得海峡内海浪没有达到远海同样风速区域的6 m左右的高度;(3)中路台风影响下,台湾海峡的浪场受台湾岛的影响出现异常明显的不对称性结构,台湾海峡北部混合浪和涌浪高出海峡南部很多;(4)台湾海峡海浪能量谱方向与局地风向之间角度较大,在北路台风影响下北部有明显的自东向西的周期大于15 s的涌浪谱,在南路台风西行时出现两股明显的成直角的风浪谱和涌浪谱。这些特征对船舶航行安全有潜在危险。
The SWAN wave mode driven by the WRF wind field is used to simulate the characteristics of typhoon waves in the Taiwan Strait and surrounding sea areas under the three typical paths of the North Path, the Middle Path and the South Path. The results show that:(1) The numerical simulation is basically consistent with the actual measurement of the buoy. The right semicircle of the typhoon wave field is larger than the left semicircle. The forward quadrant is dominated by swells, and the main wave direction radiates forward, and the main wave direction of the typhoon in the rear is chaotic. (2) Under the influence of the typhoon by the Middle Path and the South Path, the wind speed contour of 15m/s appears earlier in the Taiwan Strait, but the wind field in the strait and the typhoon wind field are divided by the topography of Taiwan Island, which shortened the wind fetch for the waves grew. The swell of the open sea cannot spread to the interior of the strait, so that the waves in the strait do not reach the height of about 6m in the same wind speed area in the open sea. (3) Under the influence of the typhoon by the Middle Path, the waves in the Taiwan Strait are obviously asymmetrical which mainly affected by the island of Taiwan. The mixed waves and swells in the northern part of the Taiwan Strait are much higher than the southern part of the strait. (4) The angle between the wave energy spectrum of the Taiwan Strait and the local wind direction is relatively large. Under the influence of the typhoon by the North Path, there is a clear swell spectrum from the east to the west with a period longer than 15s. Two remarkable spectrums of wind-wave and swell are at right angles, which appears when the typhoon moving west by the South Path. These characteristics are potentially dangerous to the safety of the ship.
参考文献:
[1] 许富祥. 中国近海及其邻近海域灾害性海浪的时空分布[J]. 海洋学报, 1996, 18(2):26-37.
[2] Wang D P, Oey L Y. Hindcast of waves and currents in hurricane Katrina[J]. Bulletin of the American Meteorological Society, 2008, 89(4):487-496.
[3] Barber N F, Ursell F. The generation and propagation of ocean waves and swell. I. Wave periods and velocities[J]. Philosophical Transactions of the Royal Society of A:Mathematical, Physical and Engineering Sciences, 1948, 240(824):527-560.
[4] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8):1212-1218.
[5] Shea D J, Gray W M. The hurricane's inner core region. I. Symmetric and asymmetric structure[J]. Journal of the Atmospheric Sciences, 1973, 30(8):1544-1564.
[6] King D B, Shemdin O H. Radar observation of hurricane wave directions[C]//Proceedings of the 16th International Conference on Coastal Engineering. Hamburg, Germany:ASCE, 1978:209-226.
[7] Bowyer P J, MacAfee A W. The theory of trapped-fetch waves with tropical cyclones-an operational perspective[J]. Weather and Forecasting, 2005, 20(3):229-244.
[8] 许富祥. 海浪预报知识讲座-第七讲海浪的地理分布与季节变化(Ⅲ)——中国近海及邻近海域灾害性海浪时空分布[J]. 海洋预报, 2002, 19(4):78-81.
[9] Young I R. A review of the sea state generated by hurricanes[J]. Marine Structures, 2003, 16(3):201-218.
[10] Beal R C, Gerling T W, Irvine D E, et al. Spatial variations of ocean wave directional spectra from the Seasat synthetic aperture radar[J]. Journal of Geophysical Research:Oceans, 1986, 91(C2):2433-2449.
[11] Walsh E J, Wright C W, Vandemark D C, et al. Hurricane directional wave spectrum spatial variation in open ocean and at landfall[C]//IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet:The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120). Honolulu, HI, USA:IEEE, 2000:2750-2752.
[12] Moon I J, Ginis I, Hara T, et al. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing[J]. Journal of Physical Oceanography, 2003, 33(8):1680-1706.
[13] Tolman H L, Chalikov D. Source terms in a third-generation wind wave model[J]. Journal of Physical Oceanography, 1996, 26(11):2497-2518.
[14] Hu K L, Chen Q. Directional spectra of hurricane-generated waves in the Gulf of Mexico[J]. Geophysical Research Letters, 2011, 38(19):L19608.
[15] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. Model description and validation[J]. Journal of Geophysical Research:Oceans, 1999, 104(C4):7649-7666.
[16] Young I R. Directional spectra of hurricane wind waves[J]. Journal of Geophysical Research:Oceans, 2006, 111(C8):C08020.
[17] Holthuijsen L H, Powell M D, Pietrzak J D. Wind and waves in extreme hurricanes[J]. Journal of Geophysical Research:Oceans, 2012, 117(C9):C09003.
[18] Liu Q X, Babanin A, Fan Y L, et al. Numerical simulations of ocean surface waves under hurricane conditions:assessment of existing model performance[J]. Ocean Modelling, 2017, 118:73-93.
[19] Chu P C, Cheng K F. South China Sea wave characteristics during typhoon Muifa passage in winter 2004[J]. Journal of Oceanography, 2008, 64(1):1-21.
[20] Wang J C, Zhang J, Yang J G. Numerical simulation and preliminary analysis on ocean waves during Typhoon Nesat in South China Sea and adjacent areas[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3):665-680.
[21] Ying M, Zhang W, Yu H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301.
[22] 曾银东. 海上实时监测系统在台风"凤凰"监测预报和防御中的应用[J]. 海洋预报, 2010, 27(1):19-23.
[23] 张友权. 福建海洋观测示范网建设与应用[J]. 海洋技术, 2012, 31(1):111-114.
[24] 王时鼎, 谢信良, 郑明典, 等. 侵台台风因台湾地形引起两类边界层现象分析及其预报问题讨论[C]//天气分析与预报研讨会论文汇编. 台北, 中国:台湾"交通部中央气象局", 2003:223-267.
[25] 陈德文. 台湾岛周边海域台风海面风场及其模型化研究[D]. 厦门:厦门大学, 2006.
[26] 高珊. 西太平洋台风影响福建近海海区的风场分布特点及数值研究[D]. 南京:南京信息工程大学, 2006.
[27] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 3[R]. Boulder, Colorado, USA:National Center for Atmospheric Research, 2008:113.
[28] Deng A J, Stauffer D R. On improving 4-km mesoscale model simulations[J]. Journal of Applied Meteorology and Climatology, 2006, 45(3):361-381.
[29] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597.
[30] The SWAN Team. SWAN Cycle Ⅲ version 41.20A[Z]. Delft University of Technology, 2018.
[31] Rogers W E, Kaihatu J M, Petit H A H, et al. Diffusion reduction in an arbitrary scale third generation wind wave model[J]. Ocean Engineering, 2002, 29(11):1357-1390.
[32] 梁小力, 王毅. 基于SWAN模式的全球有效波高数值预报结果之初步验证[J]. 海洋预报, 2015, 32(6):1-9.
[33] Kinsman B. Wind Waves, their generation and propagation on the ocean surface[M]. Englewood Cliffs, NJ:Prentice-Hall, 1965:676.
[34] Chen G, Chapron B, Ezraty R, et al. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(11):1849-1859.
[35] 魏永亮, 高志一, 唐泽艳, 等. 基于SAR波模式数据的沉船事故海浪要素分析[J]. 上海海洋大学学报, 2017, 26(6):946-952.
[36] Munk W H, Miller G R, Snodgrass F E, et al. Directional recording of swell from distant storms[J]. Philosophical Transactions of the Royal Society of Series A:Mathematical and Physical Sciences, 1963, 255(1062):505-584.
[37] 陈剑桥, 曾银东, 李雪丁. 1205号台风"泰利"影响下台湾海峡风浪特征分析[J]. 海洋预报, 2015, 32(2):31-36.
[38] 陈晓斌, 周林, 史文丽, 等. 台风"梅花"风浪场和涌浪场特征分析[J]. 海洋科学进展, 2013, 31(1):22-30.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn