首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
两种准实时遥感海冰密集度产品在中国第五次北极考察期间的适用性评估
作者:李钊1  严明1  刘凯1  惠凤鸣2  赵杰臣3 
单位:1. 海军出版社, 天津 300450;
2. 北京师范大学 全球变化与地球系统科学研究院, 北京 100875;
3. 国家海洋环境预报中心, 北京 100081
关键词:北极东北航道 海冰密集度 AMSR2 SSIMIS 走航观测 比较与评估 
分类号:P731.15
出版年·卷·期(页码):2018·35·第三期(8-16)
摘要:
比较了AMSR2和SSMIS产品在2012年中国第五次北极考察期间的差异,并利用雪龙船在北极走航观测的海冰密集度资料初步评估了两种卫星产品在北极东北航道和高纬航道的适用性。结果表明:两种产品在海冰边缘区域反演的海冰密集度差异较大,且在高纬度区域AMSR2反演的密集度普遍大于SSMIS;两种产品对海冰外缘线的反演基本相同,说明两种算法对海冰和海水的区分基本一致;在去程低纬航线上分辨率较高的AMSR2数据的平均偏差为0.14±0.11,而分辨率较低的SSMIS数据为0.17±0.11;在回程高纬航线上AMSR2数据的平均偏差为0.11±0.10,而SSMIS数据为0.11±0.12。SSMIS数据在高值区明显的低估了海冰密集度值,说明其在高值区的反演上存在系统性偏差,AMSR2数据和走航观测数据更相符。SSMIS数据在高值区偏差大的原因可能与其反演算法对海冰表面出现的大量融池的辨别能力较差有关。
AMSR2 and SSMIS satellite sea ice concentration data was evaluated and compared, using the ship-based sea ice concentration observations during the 5th CHINARE Northeast Passage cruise in Jul-Sep 2012. Results show that, the two kinds of satellite data have large differences out of the 80° N circle. The distinction of sea ice edge were good for both two data and AMSR2 showed better fits with the ship-based observations. Average bias in the go-path for SSMIS and AMSR2 is 0.17±0.11 and 0.14±0.11 respectively, but in the return-path is 0.11±0.12 and 0.11±0.10 respectively. SSMIS underestimate sea ice concentration in the high value region, but AMSR2 match with ship-based observations well. The bias of SSMIS may be caused by the bad distinction of melting pools showed in the summer.
参考文献:
[1] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1):L01703, doi:10.1029/2007GL031972.
[2] Haas C, Pfaffling A, Hendricks S, et al. Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat[J]. Geophysical Research Letters, 2008, 35(17):L17501, doi:10.1029/2008GL034457.
[3] Nghiem S V, Rigor I G, Perovich D K, et al. Rapid reduction of Arctic perennial sea ice[J]. Geophysical Research Letters, 2007, 34(19):L19504, doi:10.1029/2007GL031138.
[4] 薛彦广, 关皓, 董兆俊, 等. 近40年北极海冰范围变化特征分析[J]. 海洋预报, 2014, 31(4):85-91.
[5] Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979-2010[J]. The Cryosphere, 2012, 6(4):881-889, doi:10.5194/tc-6-881-2012.
[6] Stroeve J C, Serreze M C, Holland M M, et al. The Arctic's rapidly shrinking sea ice cover:a research synthesis[J]. Climatic Change, 2012, 110(3-4):1005-1027, doi:10.1007/s10584-011-0101-1.
[7] 孟上, 李明, 田忠翔, 等. 北极东北航道海冰变化特征分析研究[J]. 海洋预报, 2013, 30(2):8-13.
[8] Kwok R, Cunningham G F, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover:2003-2008[J]. Journal of Geophysical Research, 2009, 114(C7):C07005, doi:10.1029/2009JC005312.
[9] 魏立新, 邓小花, 县彦宗, 等. 2007与2008年夏季北极海冰变化特征及原因的对比分析[J]. 海洋预报, 2013, 30(2):1-7.
[10] 孙晓宇, 沈辉, 李春花, 等. 基于我国第七次北极科学考察-2016年夏季北极海冰厚度观测与特征分析[J]. 海洋预报, 2017, 34(4):11-19.
[11] Markus T, Stroeve J C, Miller J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length[J]. Journal of Geophysical Research:Oceans, 2009, 114(C12):C12024, doi:10.1029/2009JC005436.
[12] Spreen G, Kaleschke L, Heygster G. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. Journal of Geophysical Research:Oceans, 2008, 113(C2):C02S03, doi:10.1029/2005JC003384.
[13] Cavalieri J D, Parkinson C L, Gloersen P, et al. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data[R]. NSIDC-0051, 1996.
[14] Worby A, Allison I, Dirita V. Technique for making ship-based observations of Antarctic sea ice thickness and characteristics[R]. Research Report No. 14, 1999.
[15] 马德毅. 中国第五次北极科学考察报告[M]. 北京:海洋出版社, 2013.
[16] 赵杰臣, 张林, 田忠翔, 等. 南极罗斯海2012年夏季海冰特征分析[J]. 极地研究, 2014, 26(3):342-351.
[17] 赵杰臣, 周翔, 孙晓宇, 等. 北极遥感海冰密集度数据的比较和评估[J]. 遥感学报, 2017, 21(3):351-364.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn