首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
台阶型海脊俘获波的实验研究
作者:许洋1 2  王岗1 2  王培涛3  张尧4  郑金海1 2 
单位:1. 河海大学 海岸灾害及防护教育部重点实验室, 江苏 南京 210098;
2. 河海大学 港口海岸与近海工程学院, 江苏 南京 210098;
3. 国家海洋环境预报中心, 北京 100081;
4. 自然资源部海洋减灾中心, 北京 100194
关键词:俘获波 海啸 台阶型海脊 模型实验 
分类号:P731.25
出版年·卷·期(页码):2020·37·第二期(29-37)
摘要:
基于物理模型实验研究瞬态冲击波在台阶地形上传播过程,揭示由于反射而在海脊上出现的波浪俘获现象。结果表明:在瞬态波产生区域附近,海脊上所测到的先导波即为最大波,其由泄漏至海脊外的深水波绕射至海脊所致。随着传播距离的增加,由于频散效应的影响,先导波逐渐减小,沿台阶近似直线传播的海脊俘获波和在台阶上曲折传播的海脊俘获波逐渐显现。在距离波浪产生较远区域所测的最大波晚于先导波出现,且这些由俘获波所叠加而成的最大波随着传播距离的增加而呈现出更加复杂的波面过程。
Physical model experiments are conducted in this paper to investigate the propagation process of transient waves on the stepped ridge and to reveal the trapped waves over ridge due to the reflection at the borderline. The results show that the front wave recorded over ridge is the biggest wave, which is generated by the diffraction of deep water wave at the ridge. Along with the increase of the propagation distance, the front wave train of the generated transient wave decreases due to the dispersion effect, and the trapped waves propagating straightly along the step and zigzagging over the ridge start to gradually appear.. The biggest wave recorded in the far-field area is the superposition of the trapped wave components, which reveals complex wavefront process along with the propagation distance.
参考文献:
[1] 王培涛, 于福江, 赵联大, 等. 越洋海啸的数值模拟及其对我国的影响分析[J]. 海洋学报, 2012, 34(2):39-47.
[2] Kowalik Z, Horrillo J, Knight W, et al. Kuril Islands tsunami of November 2006:1. Impact at Crescent City by distant scattering[J]. Journal of Geophysical Research:Oceans, 2008, 113(C1):C01020.
[3] Rabinovich A B, Lobkovsky L I, Fine I V, et al. Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007[J]. Advances in Geosciences, 2008, 14:105-116.
[4] Rabinovich A B, Candella R N, Thomson R E. Energy decay of the 2004 Sumatra Tsunami in the World Ocean[J]. Pure and Applied Geophysics, 2011, 168(11):1919-1950.
[5] Horrillo J, Knight W, Kowalik Z. Kuril Islands tsunami of November 2006:2. Impact at Crescent City by local enhancement[J]. Journal of Geophysical Research:Oceans, 2008, 113(C1):C01021.
[6] Wilson R I, Admire A R, Borrero J C, et al. Observations and Impacts from the 2010 Chilean and 2011 Japanese Tsunamis in California (USA)[J]. Pure and Applied Geophysics, 2013, 170(6-8):1127-1147.
[7] Rabinovich A B, Titov V V, Moore C W, et al. The 2004 Sumatra tsunami in the Southeastern Pacific Ocean:New Global insight from observations and modeling[J]. Journal of Geophysical Research:Oceans, 2017, 122(10):7992-8019.
[8] Rabinovich A B, Woodworth P L, Titov V V. Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage[J]. Geophysical Research Letters, 2011, 38(16):L16604.
[9] Jones D S. The eigenvalues of ▽2u +λu=0 when the boundary conditions are given on semi-infinite domains[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1953, 49(4):668-684.
[10] Shaw R P, Neu W. Long-wave trapping by oceanic ridges[J]. Journal of Physical Oceanography, 1981, 11(10):1334-1344.
[11] Xiong M L, Wang G, Zheng J H, et al. Analytic arrival-time prediction method for the largest wave of tsunami trapped by parabolic oceanic ridges[J]. Journal of Earthquake and Tsunami, 2017, 11(1):1740004.
[12] 王岗, 胡见, 王培涛, 等. 双曲余弦海脊上海啸俘获波的解析与数值研究[J]. 海洋学报, 2018, 40(5):15-23.
[13] Longuet-Higgins M S. Double Kelvin waves with continuous depth profiles[J]. Journal of Fluid Mechanics, 1968, 34(1):49-80.
[14] Buchwald V T. Long waves on oceanic ridges[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1969, 308(1494):343-354.
[15] Miles J W. Kelvin waves on oceanic boundaries[J]. Journal of Fluid Mechanics, 2006, 55(1):113-127.
[16] Rossetto T, Allsop W, Charvet I, et al. Physical modelling of tsunami using a new pneumatic wave generator[J]. Coastal Engineering, 2011, 58(6):517-527.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn