首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
观测资料中大西洋和青藏高原东部地区冷暖波动的同步性
作者:李响  史珍  张蕴斐  渠鸿宇 
单位:国家海洋环境预报中心 海洋灾害预报技术研究重点实验室, 北京 100081
关键词:大西洋多年代际振荡 青藏高原 气温 增暖 
分类号:P732.5
出版年·卷·期(页码):2019·36·第三期(1-8)
摘要:
利用观测及模式模拟研究了大西洋多年代际振荡(AMO)对青藏高原(TP)夏季气温的影响。观测资料的分析表明:大西洋多年代际振荡(AMO)是TP夏季气温年代际变化的重要远程驱动因子。AMO与TP东部地区夏季气温存在显著的同步变化关系并且TP气温的年代际变率可以在很大程度上由AMO所解释。基于观测和大气环流模型(AGCM)模拟,进一步确定了从北大西洋到TP远程影响的物理机制。观测和AGCM模拟都表明:AMO暖位相会引起海平面气压在大西洋-欧亚大陆地区形成纬向偶极子型,导致TP局地气压异常升高和异常的下沉运动,进一步引起TP东部地区在夏季出现异常的干旱和高温。
In this paper, the effects of Atlantic Multi-decadal Oscillation (AMO) on summer temperature over the Tibet Plateau (TP) are studied using observation and model simulations. Using the observation data, we find that the AMO is an important remote driving factor for decadal variation of summer temperature over TP. The decadal variability of summer temperature over TP can mainly be explained by AMO. Based on observation and atmospheric circulation model (AGCM) simulation, the physical mechanism of the remote impact from the North Atlantic to TP is further determined. Both observation and simulation show that the AMO warm phase causes the formation of zonal dipole pattern of sea level pressure in the Atlantic-Eurasian region, which leads to the anomaly increase of local pressure and descending motion of TP, and further causes the anomaly drought and high temperature in summer in the TP. Our findings emphasize that the AMO plays a key role in the decadal temperature variability of TP.
参考文献:
[1] Li C L, Kang S C. Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau[J]. Journal of Geographical Sciences, 2006, 16(3):337-345.
[2] Yao T D, Thompson L G, Mosbrugger V, et al. Third pole environment (TPE)[J]. Environmental Development, 2012, 3:52-64.
[3] Chen H, Zhu Q, Peng C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013, 19(10):2940-2955.
[4] Wang C Z, Kucharski F, Barimalala R, et al. Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans:a review of recent findings[J]. Meteorologische Zeitschrift, 2009, 18(4):445-454.
[5] Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385.
[6] Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. Journal of Geology, 1993, 101(2):177-190.
[7] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66.
[8] Yanai M, Li C. Mechanism of heating and the boundary layer over the Tibetan Plateau[J]. Monthly Weather Review, 1994, 122(2):305-323.
[9] Ye D Z, Wu G X. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteorology and Atmospheric Physics, 1998, 67(1-4):181-198.
[10] Wu G X, Liu Y M, He B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2012, 2:404.
[11] He H Y, Mcginnis J W, Song Z S, et al. Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau[J]. Monthly Weather Review, 1987, 115(9):1966-1995.
[12] Wu G X, Liu Y M, Zhang Q, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian Climate[J]. Journal of Hydrometeorology, 2007, 8(4):770-789.
[13] Duan A M, Wang M R, Lei Y H, et al. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. Journal of Climate, 2013, 26(1):261-275.
[14] Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667.
[15] Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau:observations and simulations[J]. Reviews of Geophysics, 2013, 51(4):525-548.
[16] Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:a review[J]. Global and Planetary Change, 2014, 112:79-91.
[17] You Q L, Min J Z, Lin H B, et al. Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(9):3610-3621.
[18] Xie H, Zhu X. Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970-2009)[J]. Hydrological Processes, 2013, 27(25):3685-3693.
[19] Yin Y H, Wu S H, Zhao D S, et al. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(2):195-207.
[20] Stewart M. Scientific reports[J]. Wilderness & Environmental Medicine, 2014, 25(3):353.
[21] Xu Z X, Gong T L, Li J Y. Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation[J]. Hydrological Processes, 2008, 22(16):3056-3065.
[22] Diaz H F, Bradley R S. Temperature variations during the last century at high elevation sites[J]. Climatic Change, 1997, 36(3-4):253-279.
[23] Beniston M. Climatic change in mountain regions:a review of possible impacts[J]. Climatic Change, 2003, 59(1-2):5-31.
[24] Giorgi F, Hurrell J W, Marinucci M R, et al. Elevation dependency of the surface climate change signal:a model study[J]. Journal of Climate, 1997, 10(2):288-296.
[25] Liu X D, Chen B D. Climatic warming in the Tibetan plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14):1729-1742.
[26] Chen B, Chao W C, Liu X. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2:a model study[J]. Climate Dynamics, 2003, 20(4):433.
[27] Pepin N C, Lundquist J D. Temperature trends at high elevations:patterns across the globe[J]. Geophysical Research Letters, 2008, 35(14):L14701.
[28] An W L, Hou S G, Zhang W B, et al. Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records[J]. Scientific Reports, 2016, 6:32813.
[29] Enfield D B, Mestas-Nuñez A M, Trimble P J. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S[J]. Geophysical Research Letters, 2001, 28(10):2077-2080.
[30] Schlesinger M E, Ramankutty N. An oscillation in the global climate system of period 65-70 years[J]. Nature, 1994, 367(6465):723-726.
[31] Sun C, Li J P, Zhao S. Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation[J]. Scientific Reports, 2015, 5:16853.
[32] Sutton R T, Hodson D L. Atlantic Ocean forcing of North American and European summer climate[J]. Science, 2005, 309(5731):115-118.
[33] Nigam S, Guan B, Ruiz-Barradas A. Key role of the Atlantic Multidecadal oscillation in 20th century drought and wet periods over the Great Plains[J]. Geophysical Research Letters, 2011, 38(16):L16713.
[34] Lu R Y, Dong B W, Ding H. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon[J]. Geophysical Research Letters, 2006, 33(24):L24701.
[35] Li S L, Bates G T. Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China[J]. Advances in Atmospheric Sciences, 2007, 24(1):126-135.
[36] Sun C, Kucharski F, Li J P, et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation[J]. Nature Communications, 2017, 8:15998.
[37] Zhang R, Delworth T L, Held I M. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?[J]. Geophysical Research Letters, 2007, 34(2):L02709.
[38] Kucharski F, Syed F S, Burhan A, et al. Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5[J]. Climate Dynamics, 2015, 44(3-4):881-896.
[39] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D14):4407.
[40] Hansen J, Ruedy R, Sato M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48(4):RG4004.
[41] Willmott C, Matsuura K. Terrestrial air temperature and precipitation:monthly and annual climatologies (version 3.02)[M]. Center for Climatic Research, Department of Geography, University of Delaware, 2001.
[42] Poli P, Hersbach H, Dee D P, et al. ERA-20C:an atmospheric reanalysis of the twentieth century[J]. Journal of Climate, 2016, 29(11):4083-4097, doi:10.1175/JCLI-D-15-0556.1.
[43] Li J P, Sun C, Jin F F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability[J]. Geophysical Research Letters, 2013, 40(20):5497-5502.
[44] Hersbach H, Peubey C, Simmons A, et al. ERA-20CM:a twentieth-century atmospheric model ensemble[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(691):2350-2375, doi:10.1002/qj.2528.
[45] Trenberth K E, Shea D J. Relationships between precipitation and surface temperature[J]. Geophysical Research Letters, 2005, 32(14):L14703.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn