首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于WOA13数据的南大西洋声波导诊断分析
作者:曹震卿1 2  李庆红1  刘振龙2 
单位:1. 海军大连舰艇学院, 辽宁 大连 116018;
2. 中国人民解放军92993部队, 上海 201900
关键词:大西洋 声波导 WOA13 BELLHOP 
分类号:P733.21
出版年·卷·期(页码):2018·35·第三期(30-40)
摘要:
应用WOA13季节平均数据和BELLHOP模型,在季节、声源频率等因素确定的情况下,在分析南大西洋1-3月声速场,划分声速剖面类型和海区的基础上,研究5 m深度声源的声波导情况。声速剖面类型Ⅰ和类型Ⅱ均可形成汇聚区声波导,首先应考虑表层声速值的影响,其次应考虑声道轴深度的影响,且总体上,汇聚区声波导跨度由低纬度向高纬度递减,并根据表层声速值和反转深度的不同,给出了汇聚区的跨度范围。声速剖面类型Ⅲ的声传播形式则为表面声波导。同时,分析了不同声速剖面类型在传播损失上的异同。
Basing on the analyzed sound speed field, classified the sound speed profile and sea area of the South Atlantic Ocean from January to March under the fixed factors conditions of season and acoustic source frequency, the acoustic wave-guide of acoustic source of 5m depth was studied by applying the seasonal average data of WOA13 and BELLHOP model. The sound speed profile type Ⅰ and type Ⅱ could form the acoustic wave-guide of convergence zone. Considering the influence of surface sound speed and axial channel with deep-water acoustic track, on the whole, the span of convergence zone decreased from low to high latitude. According to the different surface sound speed and inversion depth, the range of convergence zone span was given. The acoustic propagation mode of sound speed profile type Ⅲ was surface acoustic wave-guide. The similarities and differences of propagation loss in three types acoustic speed was analyzed.
参考文献:
[1] Etter P C. Underwater Acoustic Modeling and Simulation[M]. 3rd ed. London:SPON Press, 2003.
[2] 张永刚, 焦林, 张旭, 等. 海洋声光电波导效应及应用[M]. 北京:电子工业出版社, 2014.
[3] 汪德昭, 尚尔昌. 水声学[M]. 北京:科学出版社, 1981.
[4] Hale F E. Long-range sound propagation in the deep ocean[J]. The Journal of the Acoustical Society of America, 1961, 33(4):456-464.
[5] Urick R J. Principles of Underwater Sound[M]. 3rd ed. New York:McGraw-Hill, 1983.
[6] 张仁和. 水下声道中的反转点会聚区(I)简正波理论[J]. 声学学报, 1980, 5(1):28-42.
[7] 张仁和. 水下声道中的反转点会聚区(Ⅱ)广义射线理论[J]. 声学学报, 1982, 7(2):75-87.
[8] Beilis A. Convergence zone positions via ray-mode theory[J]. The Journal of the Acoustical Society of America, 1983, 74(1):171-180.
[9] Bongiovanni K P, Siegmann W L. Convergence zone feature dependence on ocean temperature structure[J]. The Journal of the Acoustical Society of America, 1996, 100(5):3033-3041.
[10] Guan D H, Zhang R H, Sun Z G, et al. Spatial coherence of sound in convergence zones and shallow zones in the South China Sea[J]. The Journal of the Acoustical Society of America, 1998, 103(5):2856.
[11] Urick R J. Caustics and convergence zones in deep-water sound transmission[J]. The Journal of the Acoustical Society of America, 1965, 38(2):348-358.
[12] Urick R J, Lund G R. Coherence of convergence zone sound[J]. The Journal of the Acoustical Society of America, 1967, 43(4):723-729.
[13] Blatstein I M. Calculations of underwater explosion pulses at caustics[J]. The Journal of the Acoustical Society of America, 1971, 49(5B):1568-1579.
[14] 张旭, 张永刚. 浅海温跃层对声信道影响的仿真研究[J]. 系统仿真学报, 2012, 24(10):2167-2171, 2176.
[15] Cornuelle B D, Gopalakrishnan G, Dzieciuch M A, et al. Deepwater acoustic propagation in the northern Philippine Sea:comparison of modeled and observed ray travel times[J]. The Journal of the Acoustical Society of America, 2010, 128(4):2387.
[16] 张旭, 张永刚. 声速垂直结构变化引起的汇聚区偏移[J]. 海洋科学进展, 2010, 28(3):311-317.
[17] 庄益夫, 张旭, 刘艳. 深海声速剖面结构变化对会聚区偏移特性的影响分析[J]. 海洋通报, 2013, 32(1):45-52.
[18] Badger R L. Convergence Zone Prediction Models with Programs for Use on HP-67 and HP-97 Programmable Calculators[D]. Monterey, California:Naval Postgraduate School, 1979.
[19] Giancarlo D, Finn B J. Wave-theory Modeling of Convergence Zone Propagation in the Ocean[R]. North Atlantic Treaty Organization, Underwater Research Division, 1987.
[20] McDonald B E, Plante D R. Evidence for Self-Refraction in a Convergence Zone:NPE (Nonlinear progressive wave equation) Model Results[R]. NASA Technical Report NORDA-223, 1989:1-8.
[21] Buckingham M J. On Acoustic Transmission in Ocean-Surface Waveguides[R]. San Diego:University of California, 1991:513-555.
[22] 张永刚, 李庆红, 聂邦胜, 等. 军事海洋学概论[M]. 北京:海潮出版社, 2006.
[23] 李绍明. 世界地图集[M]. 北京:中国地图出版社, 1996.
[24] etopo2v2 global relief model-topography/bathymetry[DB/OL].[2017-09-15]. http://apdrc.soest.hawaii.edu/las/v6/constrain?var=999.
[25] Boyer T, Mishonov A. World Ocean Atlas 2013 Product Documentation[EB/OL]. (2013)[2014-10]. http://www.nodc.noaa.gov/OC5/indprod.html.
[26] 刘建斌, 张永刚. 印度尼西亚西岸温盐锋时空变化特征[J]. 海洋预报, 2015, 32(5):14-23.
[27] 刘建斌, 张永刚. 阿尔沃兰海海洋锋时空气候变化特征[J]. 海洋预报, 2016, 33(1):37-44.
[28] 刘鹏, 张永刚, 刘建斌. 阿拉伯上升流温度锋面时空分布特征分析[J]. 海洋技术学报, 2017, 36(3):13-17.
[29] Porter M B, Bucker H P. Gaussian beam tracing for computing ocean acoustic fields[J]. The Journal of the Acoustical Society of America, 1987, 82(4):1349-1359.
[30] Bucker H P. A simple 3-D Gaussian beam sound propagation model for shallow water[J]. The Journal of the Acoustical Society of America, 1994, 95(5):2437-2440.
[31] Weinberg H, Keenan R E. Gaussian ray bundles for modeling high-frequency propagation loss under shallow-water conditions[J]. The Journal of the Acoustical Society of America, 1996, 100(3):1421-1431.
[32] Jensen F B, Kuperman W A, Porter M B, et al. Computational Ocean Acoustics[M]. New York:American Institute of Physics Press, 1994.
[33] Mackenzie K V. Nine-term equation for sound speed in the oceans[J]. The Journal of the Acoustical Society of America, 1981, 70(3):807-812.
[34] Pulli J J, Upton Z, Gibson R, et al. Modeling Long-Range Hydroacoustic Reflections in the Atlantic and Pacific Oceans[R]. Contract Number DSWA01-97-C-0164, 2000:1-11.
[35] Munk W H, Forbes A M G. Global ocean warming:an acoustic measure?[J]. Journal of Physical Oceanography, 1989, 19(11):1765-1778.
[36] Buckingham M J. Ocean-acoustics propagation models[J]. Journal of Acoustique, 1992, 5(3):223-287.
[37] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京:高等教育出版社, 1999.
[38] Ainslie M A. 声呐性能建模原理[M]. 张静远, 颜冰, 译. 北京:国防工业出版社, 2015.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn